Physics For Scientists And Engineers 6E - part 267

 

  Index      Production     Physics For Scientists And Engineers 6E

 

Search            

 

 

 

 

 

 

 

 

 

Content   ..  265  266  267  268   ..

 

 

Physics For Scientists And Engineers 6E - part 267

 

 

Answers to Quick Quizzes

1065

branch.  The  reactance  of  the  inductor  is  small  so  that
current  exists  in  the  inductor  branch  and  the  lightbulb
glows.  As  the  frequency  increases,  the  inductive  reac-
tance  increases  and  the  capacitive  reactance  decreases.
At high frequencies, more current exists in the capacitor
branch  than  the  inductor  branch  and  the  lightbulb
glows more dimly. 

33.7 (a) X

L

.

X

C

. (b) X

L

"

X

C

. (c) X

L

'

X

C

.

33.8 (c). The cosine of * - is the same as that of $-, so the

cos - factor  in  Equation  33.31  is  the  same  for  both
frequencies.  The  factor  !V

rms

is  the  same  because  the

source  voltage  is  fixed.  According  to  Equation  33.27,
changing  $ - to  * - simply  interchanges  the  values  of
X

L

and  X

C

.  Equation  33.25  tells  us  that  such  an

interchange  does  not  affect  the  impedance,  so  that  the
current  I

rms

in  Equation  33.31  is  the  same  for  both

frequencies.

33.9 (c).  At  resonance,  X

L

"

X

C

.  According  to  Equation

33.25, this gives us R.

33.10(a). The higher the quality factor, the more sensitive the

detector.  As  you  can  see  from  Figure  33.19,  when  "
#

0

/!# is  high,  a  slight  change  in  the  resonance

frequency (as might happen when a small piece of metal
passes  through  the  portal)  causes  a  large  change  in
current that can be detected easily.

33.11(a)  and  (e).  The  current  in  an  inductive  circuit

decreases with increasing frequency (see Eq. 33.9). Thus,
an  inductor  connected  in  series  with  a  woofer  blocks
high-frequency  signals  and  passes  low-frequency  signals.
The  current  in  a  capacitive  circuit  increases  with
increasing  frequency  (see  Eq.  33.17).  When  a  capacitor
is connected in series with a tweeter, the capacitor blocks
low-frequency  signals  and  passes  high-frequency  signals.

Chapter 34

Electromagnetic Waves

C H A P T E R   O U T L I N E

34.1 Maxwell’s Equations and

Hertz’s Discoveries

34.2 Plane Electromagnetic Waves

34.3 Energy Carried by

Electromagnetic Waves

34.4 Momentum and Radiation

Pressure

34.5 Production of Electromagnetic

Waves by an Antenna

34.6 The Spectrum of

Electromagnetic Waves

1066

Electromagnetic waves cover a broad spectrum of wavelengths, with waves in various

wavelength ranges having distinct properties. These images of the Crab Nebula show
different structure for observations made with waves of various wavelengths. The images
(clockwise starting from the upper left) were taken with x-rays, visible light, radio waves, and
infrared waves. (upper left—NASA/CXC/SAO; upper right—Palomar Observatory; lower
right—VLA/NRAO; lower left—WM Keck Observatory)

1067

T

he waves described in Chapters 16, 17, and 18 are mechanical waves. By definition,

the  propagation  of  mechanical  disturbances—such  as  sound  waves,  water  waves,  and
waves on a string—requires the presence of a medium. This chapter is concerned with
the properties of electromagnetic waves, which (unlike mechanical waves) can propa-
gate through empty space.

In Section 31.7 we gave a brief description of Maxwell’s equations, which form the

theoretical  basis  of  all  electromagnetic  phenomena.  The  consequences  of  Maxwell’s
equations  are  far-reaching  and  dramatic.  The  Ampère–Maxwell  law  predicts  that  a
time-varying electric field produces a magnetic field, just as Faraday’s law tells us that a
time-varying magnetic field produces an electric field.

Astonishingly,  Maxwell’s  equations  also  predict  the  existence  of  electromagnetic

waves that propagate through space at the speed of light c. This chapter begins with a
discussion of how Heinrich Hertz confirmed Maxwell’s prediction when he generated
and detected electromagnetic waves in 1887. That discovery has led to many practical
communication systems, including radio, television, radar, and opto-electronics. On a
conceptual level, Maxwell unified the subjects of light and electromagnetism by devel-
oping the idea that light is a form of electromagnetic radiation.

Next,  we  learn  how  electromagnetic  waves  are  generated  by  oscillating  electric

charges. The waves consist of oscillating electric and magnetic fields at right angles to
each other and to the direction of wave propagation. Thus, electromagnetic waves are
transverse  waves.  The  waves  radiated  from  the  oscillating  charges  can  be  detected  at
great distances. Furthermore, electromagnetic waves carry energy and momentum and
hence can exert pressure on a surface.

The  chapter  concludes  with  a  look  at  the  wide  range  of  frequencies  covered  by

electromagnetic  waves.  For  example,  radio  waves  (frequencies  of  about  10

7

Hz)  are

electromagnetic waves produced by oscillating currents in a radio tower’s transmitting
antenna.  Light  waves  are  a  high-frequency  form  of  electromagnetic  radiation  (about
10

14

Hz) produced by oscillating electrons in atoms.

34.1 Maxwell’s Equations and Hertz’s 

Discoveries

In his unified theory of electromagnetism, Maxwell showed that electromagnetic waves
are  a  natural  consequence  of  the  fundamental  laws  expressed  in  the  following  four
equations (see Section 31.7):

(34.1)

(34.2)

!

  

B!d

 

A " 0 

!

  

E!d

 

A "

q

#

0

 

James Clerk

Maxwell

Scottish Theoretical Physicist
(1831–1879)

Maxwell developed the

electromagnetic theory of light

and the kinetic theory of gases,

and explained the nature of

Saturn’s rings and color vision.

Maxwell’s successful

interpretation of the

electromagnetic field resulted in

the field equations that bear his

name. Formidable mathematical

ability combined with great

insight enabled him to lead the

way in the study of

electromagnetism and kinetic

theory. He died of cancer before

he was 50. (North Wind Picture
Archives)

Maxwell’s equations

(34.3)

(34.4)

In the next section we show that Equations 34.3 and 34.4 can be combined to obtain a
wave equation for both the electric field and the magnetic field. In empty space, where
" 0  and  " 0,  the  solution  to  these  two  equations  shows  that  the  speed  at  which
electromagnetic  waves  travel  equals  the  measured  speed  of  light.  This  result  led
Maxwell to predict that light waves are a form of electromagnetic radiation.

The  experimental  apparatus  that  Hertz  used  to  generate  and  detect  electromag-

netic waves is shown schematically in Figure 34.1. An induction coil is connected to a
transmitter made up of two spherical electrodes separated by a narrow gap. The coil
provides short voltage surges to the electrodes, making one positive and the other neg-
ative.  A  spark  is  generated  between  the  spheres  when  the  electric  field  near  either
electrode surpasses the dielectric strength for air (3 $ 10

6

V/m; see Table 26.1). In a

strong  electric  field,  the  acceleration  of  free  electrons  provides  them  with  enough
energy  to  ionize  any  molecules  they  strike.  This  ionization  provides  more  electrons,
which can accelerate and cause further ionizations. As the air in the gap is ionized, it
becomes a much better conductor, and the discharge between the electrodes exhibits
an oscillatory behavior at a very high frequency. From an electric-circuit viewpoint, this
is equivalent to an LC circuit in which the inductance is that of the coil and the capaci-
tance is due to the spherical electrodes.

Because and are small in Hertz’s apparatus, the frequency of oscillation is high,

on the order of 100 MHz. (Recall from Eq. 32.22 that 

for an LC circuit.)

Electromagnetic waves are radiated at this frequency as a result of the oscillation (and
hence acceleration) of free charges in the transmitter circuit. Hertz was able to detect
these waves using a single loop of wire with its own spark gap (the receiver). Such a
receiver loop, placed several meters from the transmitter, has its own effective induc-
tance, capacitance, and natural frequency of oscillation. In Hertz’s experiment, sparks
were  induced  across  the  gap  of  the  receiving  electrodes  when  the  frequency  of  the
receiver was adjusted to match that of the transmitter. Thus, Hertz demonstrated that
the oscillating current induced in the receiver was produced by electromagnetic waves
radiated by the transmitter. His experiment is analogous to the mechanical phenome-
non  in  which  a  tuning  fork  responds  to  acoustic  vibrations  from  an  identical  tuning
fork that is oscillating.

% "

1/

LC

!

  

B!d

 

s " &

0

' &

0

#

0

 

d

 

(

E

dt

!

  

E!d

 

s " )

d

 

(

B

dt

  

1068

C H A P T E R   3 4 •  Electromagnetic Waves

Input

Transmitter

Receiver

Induction

coil

q

q

+

Figure 34.1 Schematic diagram of Hertz’s apparatus for

generating and detecting electromagnetic waves. The trans-

mitter consists of two spherical electrodes connected to an

induction coil, which provides short voltage surges to the

spheres, setting up oscillations in the discharge between the

electrodes. The receiver is a nearby loop of wire containing

a second spark gap.

Heinrich Rudolf

Hertz

German Physicist (1857–1894)

Hertz made his most important

discovery of electromagnetic

waves in 1887. After finding that

the speed of an electromagnetic

wave was the same as that of

light, Hertz showed that

electromagnetic waves, like light

waves, could be reflected,

refracted, and diffracted. Hertz

died of blood poisoning at the

age of 36. During his short life,

he made many contributions to

science. The hertz, equal to one

complete vibration or cycle per

second, is named after him.
(Hulton-Deutsch
Collection/CORBIS)

 

 

 

 

 

 

 

Content   ..  265  266  267  268   ..