Dodge Sprinter. Manual - part 36

 

  Index      Dodge     Dodge Sprinter / Mercedes-Benz - service repair manual 2006 year

 

Search            

 

 

 

 

 

 

 

 

 

Content   ..  34  35  36  37   ..

 

 

Dodge Sprinter. Manual - part 36

 

 

actuators.These outputs allow the CTM the ability to
control numerous accessory systems in the vehicle.

The CTM monitors its own internal circuitry as

well as many of its input and output circuits, and
will store a Diagnostic Trouble Code (DTC) in elec-
tronic memory for any failure it detects. These DTCs
can be retrieved and diagnosed using a DRBIII

t scan

tool. Refer to the appropriate diagnostic information.

HARD WIRED INPUTS

The hard wired inputs to the CTM include the fol-

lowing:

• Fused B(+)

• Fused ignition switch output (run-acc)

• Fused ignition switch output (run-start)

• Ground

• Key-in ignition switch sense

• Sliding door switch sense

• Passenger door switch sense

• Driver door switch sense

• PCI bus circuit

HARD WIRED OUTPUTS

The hard wired outputs of the CTM include the fol-

lowing:

• Door lock relay output

• Door unlock relay output

• VTSS indicator driver

MESSAGING

The CTM uses the following messages received

from other electronic modules over the PCI data bus:

• Airbag Deploy (ACM)

• Beep request (CMTC)

• Charging System Failure (PCM)

• Chime request (EMIC)

• Engine RPM (PCM)

• OK to Arm VTSS (PCM)

• Security indicator request (SKIM)

• System Voltage (PCM)

• Valid/Invalid Key (SKIM)

• Vehicle Distance (PCM)

• Vehicle Speed (PCM)

DIAGNOSIS AND TESTING - CENTRAL TIMER
MODULE

WARNING: To avoid personal injury or death, on
vehicles equipped with airbags, disable the supple-
mental

restraint

system

before

attempting

any

steering wheel, steering column, airbag, seat belt
tensioner, or instrument panel component diagno-
sis or service. Disconnect and isolate the battery
negative (ground) cable, then wait two minutes for
the system capacitor to discharge before perform-
ing further diagnosis or service. This is the only
sure way to disable the supplemental restraint sys-

tem. Failure to take the proper precautions could
result in accidental airbag deployment.

The hard wired inputs to and outputs from the

central timer module (CTM) may be diagnosed and
tested using conventional diagnostic tools and meth-
ods. Refer to the appropriate wiring information.

However, conventional diagnostic methods may not

prove conclusive in the diagnosis of the CTM. In
order to obtain conclusive testing of the CTM, the
programmable communications interface (PCI) data
bus network and all of the modules that provide
inputs to or receive outputs from the CTM must also
be checked. The most reliable, efficient, and accurate
means to diagnose the CTM, the PCI data bus net-
work, and the modules that provide inputs to, or
receive outputs from, the CTM requires the use of a
DRBIII

t scan tool. Refer to the appropriate diagnos-

tic information.

REMOVAL

(1) Disconnect and isolate the battery negative

cable.

(2) Slide the driver seat to the full forward posi-

tion.

(3) Disconnect the wire harness connector for the

seat belt latch. (Fig. 1).

(4) Remove the screws that secure the closeout

panel beneathe the driver seat cushion and remove
the panel.

(5) Remove the screws that secure the central

timer module to the bracket.

(6) Disconnect the wire harness connectors from

the central timer module.

(7) Remove the central timer module from the

vehicle.

8E - 2

ELECTRONIC CONTROL MODULES

VA

INSTALLATION

(1) Position the central timer module in the vehicle
(2) Connect the wire harness connectors to the

central timer module.

(3) Install the screws that secure the central timer

module. Tighten the screws securely.

(4) Route the seat belt latch wire lead through the

hole in the closeout panel and position the panel
beneath the driver seat cushion

(5) Install the screws that secure the closeout

panel beneath the driver seat cushion. Tighten the
screws securely.

(6) Connect the wire harness connector to the seat

belt latch connector.

(7) Slide the driver seat to back to its original posi-

tion.

(8) Reconnect the negative battery cable.

CONTROLLER ANTILOCK
BRAKE

DESCRIPTION

The Controler Antilock Brake (CAB) is mounted to

the Hydraulic Control Unit (HCU) and operates the
ABS system.

REMOVAL

(1) Remove the negative battery cable from the

battery.

(2) Pull up on the CAB harness connector release

and remove connector.

(3) Remove the CAB mounting bolts.
(4) Remove the CAB from the HCU.

INSTALLATION

(1) Install CAB to the HCU.
(2) Install mounting bolts. Tighten to 2 N·m (16 in.

lbs.).

(3) Install the wiring harness connector to the

CAB and push down on the release to secure the con-
nector.

(4) Install negative battery cable to the battery.

ENGINE CONTROL MODULE

DESCRIPTION

The electronic control module (ECM) is mounted to

the left lower dash panel and consists of an electronic
printed circuit board which is designed as a milliliter
board assembly fitted on both sides. The routing of
the wiring harness connector at the ECM connector
are split into interfering cables and sensitive cables
in order to achieve improved electromagnetic compat-
ibility. The smaller wiring harness connector is used
for the vehicle wiring harness and the larger harness
is used for the engine wiring harness. The ECM
stores engine specific data, monitors the connected
sensor and analyzes their measurement (Fig. 2).

Its task consists in controlling the following sys-

tems in line with the analysis of the input signals:

• Fuel Supply System

• Injected Quantity Control

• Emission Control System

• Charge Pressure Control

• Cruise Control

• A/C Compressor Shut-Off

• Pre-Heating Output Relay for the Glow Plugs

• Vehicle Theft

• Air Bag

• Monitors inputs/outputs, checks plausibility and

stores faults

• Share information with other control modules

• Diagnosis
If a sensor should fail, provided the fault is not

serious, the ECM will continue to operate the engine
in Limp-Home Mode (emergency mode) using a
default value for the missing signal. The ECM
ensures that, continuing to operate the engine will
not cause damage or effect safety, otherwise a Engine
shut-off process will be carried out (Fig. 3).

Fig. 1 Central Timer Module

1 - DRIVER SEAT
2 - WIRE HARNESS CONNECTOR
3 - SCREW (2)
4 - CLOSEOUT PANEL
5 - CENTRAL TIMER MODULE
6 - WIRE HARNESS CONNECTOR (2)
7 - SCREW (2)

VA

ELECTRONIC CONTROL MODULES

8E - 3

ECM Control Strategy The engine control module

is involved with a variety of functions such as: (Fig.
3)

• Individual injector activation

• Engine idle speed control to ensure smooth

engine idling independent of engine load

• Ride comfort function such as anti jerk control:

The CDI control module detects irregularities in
engine speed (resulting, for example, from load
changes or gear shift) from the signal supplied by the
crankshaft position sensor and reduces them by
adjusting the quantity injected into each of the cylin-
ders

• Constant RPM (high idle feature) for ambulance

vehicle bodies equipped with electrical appliances

• Starter control, immobilizer, cruise control, kick

down, air conditioner

• Maintenance computer ASSYST (optional)

• Glow plug for pre-heating, post heating and

intermittent heating

• Error code memory/diagnostics, communication

interface for diagnosis and handling the fault codes

• The maximum vehicle speed is programmable

from 19–82 m.p.h. The standard is 82 m.p.h.

Fig. 2 ECM

1 - MASS AIR FLOW SENSOR

8 - CHARGE AIR PRESSURE SENSOR

2 - TURBOCHARGER SERVO MOTOR

9 - CHARGE AIR TEMPERATURE SENSOR

3 - CAMSHAFT POSITION SENSOR

10 - COOLANT TEMPERATURE SENSOR

4 - ENGINE OIL SENSOR

11 - FUEL RAIL PRESSURE SENSOR

5 - CRANKSHAFT POSITION SENSOR

12 - FUEL TEMPERATURE SENSOR

6 - PRESSURE REGULATOR VALVE

13 - FUEL QUANTITY CONTROL VALVE

7 - EGR VALVE

14 - AIR INTAKE PRESSURE SENSOR

8E - 4

ELECTRONIC CONTROL MODULES

VA

New software has been loaded to the ECM for EGR

control. This is due to the wider operating range and
larger volume of recirculated gas. There is a consid-
erable number of new, adapted, and optimized func-
tions, particularly with regard to injection, EGR,
boost control, sensing of the input parameters and
the signaling of the actuators (Fig. 3).

• The rail pressure control achieved by signaling

the quantity control valve in the high pressure pump
and the pressure regulator results in reduced power
consumption of high pressure pump and in lowering
fuel pressures

• Individual cylinder torque control for smooth

engine running: using the crankshaft position sensor
signals, the ECM detect non-uniform engine running
results from uneven torque contributions of the indi-
vidual cylinders and adjust the injection quantities of
the individual injectors so that all cylinders make the
same torque contribution

• A relay is used for activating the electric in-tank

fuel pump

• Heated crankcase ventilation to ensure pressure

compensation even at low temperatures

• Improved boost pressure control using an elec-

tric variable nozzle turbine actuator with position
feed back

• Controlled fuel heating using the high pressure

pump closed-loop control

• Translation of the drive input received from the

accelerator pedal module which is equipped with
dual hall sensors

• Measurement of the intake air mass using new

mass air flow (MAF) sensor with increase precision
and extended measuring range

• O2 sensor for measuring the amount of oxygen

in the exhaust in order to calculate the air to fuel
ratio. With the intake air mass being known, the
injected fuel quantity can be calculated from the air
to fuel ratio

• Activation of the O2 sensor heater to burn off

deposits

• Full load EGR with a more precise, model based

EGR closed-loop control. The ECM calculates the
EGR rate from the various sensor signals. Using the
calculate EGR rate in percent instead of the fresh air
mass flow as a control parameter enables a more pre-
cise control of the EGR rate as well as better correc-
tion of the target value.

The oxygen sensor signal can be used in combina-

tion with the mass air flow signal, the injection
quantity signal and pressure and temperature sig-
nals to perform the following functions for optimized
closed loop control and monitoring of emissions
related components:

• Injection valve quantity drift compensation in

partial load range: the oxygen content in the exhaust
is calculated from the air mass and from injection
quantity signal and is compared to the air-fuel ratio
as measured by the sensor. If the calculated air-fuel
ratio differs from the measured air-fuel ratio, the is
no correction of the injection quantity but the EGR

Fig. 3 ECM CONTROL

VA

ELECTRONIC CONTROL MODULES

8E - 5

 

 

 

 

 

 

 

Content   ..  34  35  36  37   ..