Экзаменационные билеты по патофизиологии с ответами - часть 2

 

  Главная      Учебники - Разные     Экзаменационные билеты по патофизиологии с ответами

 

поиск по сайту            

 

 

 

 

содержание   ..   1  2  3   ..

 

 

Экзаменационные билеты по патофизиологии с ответами - часть 2

 

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 22

1.Болезнь – вид страдания, вызывающий поражение организма, отдельных его систем различными повреждающими факторами, характеризующимися наличием систем регуляции и адаптации и снижение трудоспособности. Включает в себя пат.реакцию, пат.процесс, и пат.состояние. Характеризуется симптомами и изменениями структуры.

Периоды:1.латентный или скрытый(инкубационный)-время между действием причины и появлением симптомов.2.продромальный-характерны неспецифические симптомы,время от первых проявлений до полного разгара симптомов.3.полное развитие болезни или разгао-все основные проявления болезни,от нескольких дней до неск.лет.4.исход-полное выздоровление,выздоровление с остаточными явлениями,смерть,стойкое патол.изменение органов.

3. Гиперфункция щитовидной железы, виды, этиология и патогенез, основные проявления.

Тиротоксикоз (гипертиреоз) – синдром, наличие которого связано с повышенным содержанием тироидных гормонов в крови, что встречается при различных заболеваниях или экзогенном избыточном поступлении тироидных гормонов. Тиротоксикоз наблюдается при диффузном токсическом зобе, многоузловом токсическом зобе, тиротоксической аденоме, подостром тироидите (первые 1-2 недели), послеродовом (немом) тироидите, аутоиммунном тироидите (гипертироидная его фаза – ”хаситоксикоз”), тироидите, развившимся после экспозиции ионизирующей радиации, тиротропиноме, синдроме нерегулируемой секреции ТТГ, фолликулярном раке щитовидной железы и его метастазах, эктопированном зобе (струма яичника), избыточном приеме йода (йод-базедова болезнь), трофобластических опухолях, секретирующих хорионический гонадотропин, ятрогенном и “искусственном или условном” тиротоксикозе.

Диффузный токсический зоб – аутоиммунное заболевание и развивается у лиц с наследственной предрасположенностью. При диффузном токсическом зобе в сочетании с офтальмопатией выявлено увеличение частоты генов HLA-B8, HLA-Cw3 и HLA-

DR3. Внеклеточный фрагмент рецептора способен комплексироваться с ТТГ и тироидстимулирующими антителами. Рецептор ТТГ является гликопротеидом, содержащим 30% углеводов и 10% нейраминовой кислоты, наличие которой необходимо для комплексирования ТТГ с рецептором. Взаимодействие ТТГ с олигосахаридным компонентом рецептора вызывает конформационные изменения гормона, ведущие к транслокации a-субъединицы ТТГ внутрь мембраны с активацией G-белка, активации аденилатциклазы и последующих серий реакций, характерных для действия ТТГ. Кроме того, у человека ТТГ активирует фосфолипазу С рецептора, результатом чего является повышение образования диацилглицерина и инозитолтрифосфата, являющихся также

вторичными мессенджерами и принимающими участие в механизмах биологического действия ТТГ. При диффузном токсическом зобе и особенно при аутоиммунном тироидите в щитовидной железе выявляется лимфоидная инфильтрация. Лимфоциты и плазматические клетки продуцируют антитела, часть которых взаимодействует с рецептором ТТГ, а возможно, и с другими структурами мембраны и лишь после этого – с рецепторами к ТТГ. Только часть образовавшихся антител попадает в лимфатическое и кровяное русло. Образующийся на мембране тироцита комплекс антиген-антитело- комплемент обладает цитотоксическими свойствами, что приводит к повреждению щитовидной железы. Клетки-убийцы (киллеры, К-клетки), взаимодействуя с клетками- мишенями, которые прореагировали с иммуноглобулинами, осуществляют деструкцию этих клеток. Возникает как бы замкнутая патологическая цепная реакция, конечным результатом которой является в одном случае диффузный токсический зоб, в другом – аутоиммунный тироидит. Роль аутоиммунных механизмов в развитии диффузного токсического зоба подтверждается сочетанием заболевания с носительством антигенов HLA-B8 и HLA-Dw3 иHLA-DR3, которые располагаются на шестой хромосоме рядом с геном, отвечающим за иммунореактивность организма. Развитие клинических признаков диффузного токсического зоба связано с избыточной секрецией тироидных гормонов и их влиянием на различные органы и ткани, в частности, с повышением образования тепла (калоригенное действие), увеличением потребления кислорода, что отчасти связано с разобщением окислительного фосфорилирования. Клиника -Большинство эффектов избытка тироидных гормонов опосредуется через симпатическую нервную систему: тахикардия, тремор пальцев рук, языка, всего туловища (симптом телеграфного столба), потливость, раздражительность, чувство беспокойства и страха. Нарушения сердечно- сосудистой деятельности проявляются в виде тахикардии (пульс даже в период ночного сна более 80 в минуту), повышения систолического и снижения диастолического артериального давления (увеличение пульсового давления), приступов мерцательной аритмии, появления ее постоянной формы с развитием сердечной недостаточности. Тоны сердца громкие, на верхушке сердца прослушивается систолический шум. Сосуды кожи расширены (компенсаторная реакция для отдачи тепла), в связи с чем она теплая на ощупь, влажная. Помимо этого, на коже у некоторых больных выявляется витилиго, гиперпигментация складок кожи, особенно в местах трения (шея, поясница, локоть и др.), крапивница, следы расчесов (зуд кожи, особенно при присоединении поражения печени), на коже головы – алопеция (локальное выпадение волос). Сердечно-сосудистые изменения обусловлены действием избытка тироидных гормонов на сердечную мышцу, что приводит к нарушению многих внутриклеточных процессов (разобщение окислительного фосфорилирования и др.), формированию синдрома тиротоксического сердца.

При обследовании на ЭКГ, помимо синусовой тахикардии, может выявляться синусовая аритмия, высокий вольтаж зубцов, ускорение или замедление предсердно-желудочковой проводимости, отрицательный или двухфазный зубец Т, мерцательная аритмия.

4.Общие механизмы нарушений процессов канальцевой реабсорбции и секреции, виды и механизмы развития.

В основе этих нарушений лежит изолированное повреждение ферментных систем, что имеет место при наследственных и приобритенных тубулопатиях. Также причиной нарушения функции канальцев могут быть дистрофические изменения канальцевого эпителия, структурные изменения в окружающем интерстиции и расстройства эндокринной регуляции.

Тубулопатии-это заболевания,обусловленные нарушением траспортных функций эпителия почечных канальцев в связи с отсутствием или качественными изменениями белков-переносчиков, тех или иных ферментов, рецепторов для гормонов или дистрофическими процессами в стенке канальцев. Различают первичные (наследственные) и вторичные (могут развиваться под действием ЛС-тетрациклин с истекшим сроком годности,при отравлениях солями лития, висмута, ртути, свинца, кадмия; при обширных ожогах, миеломе, интерстициальном нефрите). Еще есть проксимальные( обусловлены нарушением функции проксимальных канальцев:1.фосфатурия-возникает вследствие нарушения реабсорбции фосфатов, сопровождается фосфатемией, рахитоподобными изменениями в костях.Отсутствие транспортного белка для фосфатов, а также недостаток рецепторов для связывания кальцитриола;2.почечная глюзозурия- понижение почечного для глю вследствие уменьшения максимальной способности канальцев ее реабсорбировать.3.почечная гипераминоацидурия- отсутсвие одного или нескольких транспортных белков- переносчиков, учавствующих в реабсорбции ак. Возникает при изолированном выпадении специфической транспортной системы, необходимой для реабсорбции цистина.

4.дистальные тубулопатии-относится почечный диабет, в основе его лежит отсутствие реакции почек на АДГ,что ведет к нарушению реабсорбции воды в дистальных канальцах и собирательныз трубочках,в результате полиурия,сопровождающаяся полидипсией,почки утрачивают способность к концентрированию мочи, относ.плотность 1005,в крови адг- норма. )


 

 

 

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 23

 

  1. По Черноруцкому:1-астеник-короткое туловище,длинные конечночти,узкая и плоская грудная клетка;преобладание процессов диссимиляции над ассимиляцией,склонность к повышению основного обмена и алкалозу,ускоренная утилизация глю,склонность к птозу органов бр.полости,ЯБЖ, тяжелому течению туберкулеза легких;2-гиперстеник- преобладает ассимиляция, понижение основного обмена и ацидоз,нарушение толерантности к глю,повышенное сод-е в крови липидов и хс,предрасположенность к ссс- атеросклероз,инфаркт миокарда, гипертония,сах.диабет,ожирение,жкб;3-нормостеник- равновесие везде,предрасположенность к заболеваниям верхних дых.путей и опорно- двигательного аппарата.

    Имеются данные о связи между типом конституции и психиескими заболеваниями.

    Среди больных шизофренией преобладают астеники,развитие эпилепсии у атлетов.

  2. При воспалении на разных стадиях сосудистых реакций происходят следующие важные и последовательные процессы.• Повышение тонуса стенок артериол и прекапилляров, сопровождающееся уменьшением их просвета и развитием ишемии.• Снижение тонуса стенок артериол, сочетающееся с увеличением их просвета, развитием артериальной гиперемии, усилением лимфообразования и лимфооттока.• Уменьшение просвета венул и лимфатических сосудов, нарушение оттока крови и лимфы по ним с развитием венозной гиперемии и застоя лимфы.• Дискоординированное изменение тонуса стенок артериол, венул, пре- и посткапилляров, лимфатических сосудов, сочетающееся с увеличением адгезии, агрегации и агглютинации форменных элементов крови, её сгущением и развитием стаза.

МЕХАНИЗМЫ ВОЗНИКНОВЕНИЯ

Расширение просвета малых артерий и артериол достигается за счёт реализации нейрогенного, гуморального и нейромиопаралитического механизмов или их сочетания.•Нейрогенный механизм. Различают нейротоническую и нейропаралитическую разновидности нейрогенного механизма развития артериальной гиперемии(Заключается в преобладании эффектов парасимпатических нервных влияний (по сравнению с симпатическими) на стенки артериальных сосудов).Нейропаралитический механизм. Характеризуется снижением или отсутствием («параличом») симпатических нервных влияний на стенки артерий и артериол.• Гуморальный механизм. Заключается в местном увеличении содержания вазодилататоров — БАВ с сосудорасширяющим эффектом (аденозина, оксида азота, ПгE, ПгI2, кининов) и в повышении чувствительности рецепторов стенок артериальных сосудов к вазодилататорам• Нейромиопаралитический механизм(Истощение запасов

катехоламинов в синаптических везикулах варикозных терминалей симпатических нервных волокон в стенке артериол,Снижение тонуса ГМК артериальных сосудов.)

ВИДЫ АРТЕРИАЛЬНЫХ ГИПЕРЕМИЙ

Существует физиологическая и патологическая артериальная гиперемия. Их различает два критерия -Адекватность — соответствие артериальной гиперемии изменению функции и метаболизма в органах и тканях• Адаптивность — наличие (или отсутствие) приспособительного биологического значения артериальной гиперемии в каждом конкретном случае.

Физиологическая артериальная гиперемия

Физиологическая артериальная гиперемия адекватна воздействию и имеет адаптивное значение. Может быть функциональной и защитно-приспособительной.

СТАЗ-характеризуется дискоординированным изменением тонуса стенок микрососудов и, как следствие — прекращением тока крови и лимфы в очаге воспаления. Длительный стаз ведёт к развитию дистрофических изменений в ткани и гибели отдельных её участков.

3.Этиология- наследственную предрасположенность, нарушения обмена веществ (повышение содержания в крови жиров, или гиперлипидемия, ожирение, как одно из проявлений нарушений жирового обмена), злоупотребление алкоголем, курение, сопутствующие заболевания органов пищеварения, в первую очередь, желчного пузыря и желчевыводящих путей, инфекции (вирусная, бактериальная, глистная), длительный прием лекарственных препаратов, прежде всего гормонов (кортикостероидов, эстрогенов) и некоторых антибиотиков (тетрациклинов), аутоиммунные заболевания, сдавление опухолью, дуодениты.

Основу патогенеза острого панкреатита составляют процессы местного и системного воздействия панкреатических ферментов и цитокинов различной природы. Ферментную теорию с основной ролью трипсина в патогенезе заболевания считают ведущей.

Комбинация нескольких пусковых факторов в рамках полиэтиологичности острого панкреатита - основной момент внутриацинарной активации протеолитических ферментов

и аутокаталитического переваривания поджелудочной железы. В цитоплазме ацинарной клетки наблюдается слияние зимогенных гранул и лизосомальных гидролаз («колокализационная теория»), вследствие которого активируются проферменты с последующим выходом протеаз в интерстиций поджелудочной железы. Активация трипсиногена и переход его в трипсин - мощный активатор всех остальных проэнзимов с формированием каскада тяжёлых патобиохимических реакций. Принципиально важным в патогенезе заболевания представляют преждевременную активацию ферментных систем, причём ранний механизм активации связан с повреждением клеточных мембран и нарушением трансмембранных взаимосвязей. механизм патогенеза панкреонекроза при повреждении ацинарной клетки - изменение концентрации ионов кальция в клетке и за её пределами, что приводит к активации трипсина. При увеличении концентрации ионов кальция в клетке инициируется внутриклеточный синтез фактора активации тромбоцитов (главного медиатора воспаления). Другие механизмы аутоактивации ферментных систем в поджелудочной железе: нарушение равновесия в системе «фермент-ингибитор» или дефицит ингибиторов трипсина (альфа-1-антитрипсина или альфа-2-макроглобулина), развивающийся на фоне мутации соответствующего гена. рипсин - первичный активатор каскада тяжёлых патобиохимических реакций, но выраженность патологических реакций обусловлена действием интегральной совокупности всех ферментных систем поджелудочной железы (трипсина, химотрипсина, липазы, фосфолипазы А2, эластазы, карбоксипептидазы, коллагеназы и т.д.).

Активированные ферменты поджелудочной железы выступают в качестве первичных факторов агрессии, оказывают местное действие, поступают в забрюшинное пространство, брюшную полость, по воротной вене - в печень, по лимфатическим сосудам

бессилие - нервно-мышечное заболевание с мышечной слабостью и патологической утомляемостью.

В результате различных патологических процессов в НС,вызывающих нарушение структуры и функции двигательных анализаторов, развиваются параличи (плегии, выпадение) с отсутствием силы мышц и парезы (ослабление) со снижением силы мышц.

Различают органические, функциональные и рефлекторные параличи и парезы. По распространенности поражения выделяют моноплегию (монопаралич) мышц одной конечности и диплегию - двух конечностей. Среди диплегий различают верхнюю и нижнюю параплегию, когда парализованы мышцы обеих рук или ног. Паралич или парез мышц одной половины тела называется соответственно гемиплегией или гемипарезом.

По характеру тонуса пораженных мышц параличи и парезы могут быть: 1)

спастические,

    1. вялые и 3) ригидные.

      В зависимости от уровня поражения двигательного анализатора параличи и парезы подразделяют на центральные, периферические и экстрапирамидные.

      а) Центральный паралич или парез по характеру тонуса пораженных мышц обычно бывает спастическим и развивается в результате органического поражения центрального двигательного нейрона на любом участке корково-спинального(пирамидного) пути (в коре больших полушарий, внутренней капсуле, мозговом стволе, спинном мозге) - пирамидный паралич.б) Периферический паралич или парез по характеру изменения тонуса пораженных мышц является вялым, наблюдается при поражении периферического двигательного нейрона и сопровождается атрофией мышц!в) Экстрапирамидный паралич или парез наблюдается при поражении паллидо-нигральной системы и по характеру изменения тонуса мышц является ригидным. Он обусловлен влиянием этой системы на ретикулярную формацию и нарушением корково-подкорково-стволовых нейронных связей. Экстрапирамидный паралич и парез характеризуется отсутствием или снижением двигательной активности или инициативы. Развивается гипокинезия - снижение темпа движений, выпадение содружественных или автоматических движений, бедность движений, замедленность речи, наблюдается походка мелкими шажками и отсутствие сопутствующих движений руками. Мышечный тонус повышен и носит восковой характер (т.е. это тонические судороги) как следствие одновременного равномерного повышения тонуса сгибателей и разгибателей, пронаторов и супинаторов. Нередко может быть феномен "зубчатого колеса" - толчкообразное ритмическое сопротивление сгибаниям и разгибаниям и застывание конечности в приданном ей положении – каталепсия- это расстройство в двигательной сфере, выражающееся в длительном сохранении отдельными частями тела больного (голова, руки, ноги) приданного им положения.Больной может длительно удерживать сложные, неудобные позы. В основе каталепсии лежит изолированное выключение влияния КГМ при сохранении деятельности нижележащих отделов двигательного аппарата (в норме основное значение этой деятельности в уравновешивании тела в пространстве,но она замаскирована произвольными движениями).

      При поражении более древних образований ГМ возникают тонические судороги, связанные с повышением мышечного тонуса, например, экстензоров при децеребрационной ригидности после перерезки ствола мозга по передней границе четверохолмия при одновременном расслаблении флексоров. У животного конечности вытягиваются, голова, шея и хвост поднимаются. Это следствие перерыва центральных путей от некоторых подкорковых образований к тормозящему отделу ретикулярной

      формации и освобождения тонических центров продолговатого и спинного мозга. Мозжечок также оказывает тормозящее действие на тонические центры - через ядра шатра и тормозящий отдел ретикулярной формации и поэтому удаление мозжечка ведет к усилению децеребрационной ригидности.

      Гиперкинезы - избыточные, насильственные, непроизвольные движения, проявляющиеся сокращением мышц лица, туловища или конечностей и возникают чаще при поражении экстрапирамидной системы: полосатого тела, бледного шара обычно в сочетании с черным веществом среднего мозга (паллидо-нигральная система), таламуса и его связей, субталамического ядра, зубчатого ядра мозжечка, красного ядра и их связей (оливо-денто-рубальной системы).

      Имеет значение нарушение функции обратной связи между корой и подкоркой.

      Значение коры ГМ в происхождении гиперкинезов выявляется при локальных судорожных подергиваниях, возникающих при раздражении двигательной зоны опухолью и т.п. при возникновении местных корковых судорог при "Кожевниковской эпилепсии" (постоянные локализованные судороги, переходящие в эпилептический приступ). При нарушении афферентной корковой иннервации одного полушария (поражение таламо- кортикальных связей) возникает гемихорея.

      В патогенезе гиперкинезов необходимо учитывать образование доминанты в подкорковых отделах ГМ, а также выключение регулирующей роли КГМ. В появлении и усилении гиперкинезов при волнениях, стрессе, эмоциях большую роль играет таламус. Ретикулярная формация может способствовать развитию и усилению гиперкинезов, а также их торможению. Гиперкинезы экстрапирамидного происхождения отличаются разнообразными клиническими проявлениями, нередко вычурностью, неестественностью в сочетании с изменением мышечного тонуса (снижением или повышением по пластическому типу) - чередование сокращений флексоров и экстензоров.

      Виды: Тремор (дрожжание) может быть постоянный или пароксизмальный, ритмичный или неритмичный,распространенный (охватывает все тело) или локализованный (охватывает отдельные части тела).Миоклонии - разбросанные,беспорядочные, быстрые и неритмичные клонические сокращения мышц. Тики - гиперкинезы миоклонического типа - проявляются разнообразно: подергивание мимических мышц, жестикуляция или быстрое вздрагивание.Хорея (хореический гиперкинез) - быстрые, разбросанные, неритмичные разнообразные движения мышечных групп конечностей, лица. Усиливается при волнении, уменьшается в покое и прекращается во сне.Атетоз проявляется медленными, червеобразными, непрерывными тоническими движениями (спазмом) пальцев, кисти, стопы, мышц лица и может быть односторонним и двусторо нним.Хореоатетоз - сочетание атетоидных и хореических движений.

      Механизмы нарушения деятельности нервной системы условно делят на

      периферические, центральные и нейромедиаторные.

      1. Периферические механизмы:а) изменение чувствительности нервных проводников - гипостезия вплоть до анестезии или гиперстезия, парестезия.б) выпадение соответствующей функции - если эфферентной части - возникают парезы, параличи, афферентной части - анестезия, а при сохранении центральной и эфферентной частей - синдром деафферентации проявляется новыми чертами ткани:1. монотонностью деятельности пораженного участка, 2. упрощением тканевой структуры участка - малодифференцированная, похожая на эмбриональную.в) резким повышением

        чувствительности к нейромедиаторным и гормональным воэдействиям - реакция до предела - до потолка.

        Понятие “деафферентация” более узкое, чем денервация - подразумевает прекращение поступления в ЦНС сенсорных импульсаций (слуховых, зрительных, экстеро- проприоцептивных и др.), что ведет к нарушению физиологических свойств нервных центров. Например, деафферентированная лапа собаки начинает двигаться в одном ритме с дыхательными движениями грудной клетки. В нормальных условиях афферентная импульсация, идущая к мотонейронам конечности, поддерживает циркуляцию импульсов по замкнутому кругу в пределах определенных сегментов спинного мозга (от конечности к мотонейронам и от них снова к конечности) и тормозит воздействие других функциональных систем.

      2. Центральные механизмы связаны: 1. с органическими поражениями ЦНС - при ишемии мозга выпадает чувствительная функция (слепота, глухота) или двигательная - очаг повреждения в постцентральной извилине вызывает моноанестезию (или моногипестезию) как результат выпадения функции определенного центра.2. функциональные поражения: в условиях тяжелой патологии, гипоксии, гипогликемии могут развиваться:а) запредельное торможение с определенной фазностью ответа по этажам ЦНС (сохранение самих нервных клеток от гибели при истощении, но это может быть гибельно для целого организма, как и эффект выпадения при неврозах);б) Нарушение координационной связи между этажами НС - есть общий принцип - чем позднее развивались отделы и функции НС - тем они сложнее и разветвленнее, но соответственно и чувствительнее к патологическим воздействиям.Вышележащие структуры не дублируют, а более тонко регулируют в основном тормозным путем нижележащие отделы.При выключении или ослаблении регулирующего влияния КГМ происходит растормаживание подкорки,нарушение иерархии взаимоотношения этажей НС - при выключении высшего отдела нижележащий растормаживается, возникает усиленная хаотическия плохоуправляемая деятельность нижележащих структур: спастический паралич при нарушении корковой регуляции, повышение пластического тонуса при разобщении коры и гипоталамуса (центр пластического тонуса находится в зрительных буграх и в норме его тормозит КГМ, а при ее нарушении может быть спастический паралич). При перерезке ствола мозга ниже красных ядер возникает децеребрационная ригидность - растормаживание экстензоров (центр пластической ригидности находится в продолговатом мозге, а регулирующий его центр в подкорке и при децеребрации - ригидность, поэтому при гибели организма развиваются судороги).

        У больных с нарушением кровоснабжения мозга (атеросклероз) снижаются тормозные процессы и растормаживается аппетит - прожорливость, болтливость (особенно на сексуальные темы), а у животных - иннертность функций, утрированная реакция на боль.

        в) патологическое возбуждение по механизму формирования патологического генератора возбуждения: патологическая доминанта и детерминанта. В основе их формирования лежит очаг возбуждения в ЦНС, направляющий целостную деятельность организма в данный момент и в данных условиях. Очаг характеризуется повышенной возбудимостью, стойкостью и застойностью, длительностью, иннерцией и подкрепляется неспецифическими раздражителями. При патологической доминанте очаг возбуждения захватывает центр, группу центров или нейронов и ведет к доминированию (+) патологической системы, вызывая вокруг себя торможение (-).

        В механизмах полома функциональной системы огромное значение имеют: афферентный синтез (станция отправления) и программа действия (станция назначения).

        Учение о детерминирующей станции отправления создал Г.Н.Крыжановский. ДСО - это структура в НС, которая осуществляет усиленную функциональную посылку в верхние этажи и во многом обусловливает характер ответной реакции. Это генераторы импульсов, возникающие на базе релейных переключений в НС. Патологическая детерминанта замкнута в пределах одной системы, не влияет на другие, не требует подкрепления, но зона захвата этим возбуждением постепенно расширяется внутри данной системы нейронов (((+))) - формируется ДСО. Количество возбуждения в генераторе может бытьувеличено за счет усиления раздражения или уменьшения тормозных влияний. Тормозные механизмы возникли более поздно и, соответственно, более ранимы при гипоксии, гипогликемии, инфекциях. В этом случае нарушается переход аммиака в глютамин → глютаминовую кослоту → ГАМК из-за снижения активности декарбоксилазы.

        Группа нейронов самонаводит возбуждение и формируются нейропатологические синдромы:1. с повторением действия - локальные гиперкинезы: хорея, атетоз, паркинсонизм - очаг в ядрах стриопаллидарной системы, 2. сложные нарушения движения

        • ротаторный синдром - при поражении вестибулярного аппарата животное перекатывается, 3. центральный болевой синдром (настолько мощный, что животное отгрызает себе лапу), 4. формируется патологическое стереотипное поведение - навязчивые идеи, страхи, движения.

          г) В норме в ЦНС существует векторная передача возбуждения с преобладанием возбудительных медиаторов, а в остальные стороны возбуждение не передается в связи с блокадой тормозными медиаторами. Механизм патологической иррадиации возбуждения, в отличие от нормальной векторной деятельности, в патологии приводит к растеканию возбуждения по всем двигательным зонам коры и подкорки, что лежит в основе формирования общего судорожного приступа при эпилепсии.


      3. Нейромедиаторный механизм нарушения связан с нарушением синаптической передачи между нейронами и при передаче на мышцы:А. нейромедиатор может долго не разрушаться, например:1) в синапсах ацетилхолин очень быстро разрушается холинэстеразой (а ее может быть очень мало либо она блокирована нейропаралитическими ядами – боевыми отравляющими веществами (табун, зарин, заман) и в итоге отравления ацетилхолина - очень мощное возбуждение парасимпатической НС, может быть паралич дыхательного центра),2) в симпатической НС - норадреналин (разрушается моноаминооксидазой),3) в подкорковых ядрах - дофамин (разрушается глицином).

        Б. может развиваться недостаточность возбудительного медиатора (например, недостаточность дофамина → снижение мышечного тонуса → гипокинезия, миастения). При недостаточности тормозных медиаторов (глицин, ГАМК) развивается картина генерализованного распространенного возбуждения при общем судорожном приступе.


        Билет 25


        Вопрос 1 -влияние социальных экологических факторов на здоровье человека

        1. С медико-биологических позиций наибольшее влияние экологические факторы городской среды оказывают на следующие тенденции: 1) процесс акселерации; 2) нарушение био-¦ритмоэ; 3) аллергизация населения; 4) рост онкологической

      ^заболеваемости и смертности; 5) рост доли лиц с избыточным весом; 6) отставание физиологического возраста от календарного; 7) «омоложение» многих форм патологии; 8) абио-Ьогическая тенденция в организации жизни и др.

      Акселерация — это ускорение развития отдельных органов или частей организма по сравнению с некой биологиче-5ской нормой.

      Биологические ритмы В усло-иях городской жизни они могут нарушаться. Это прежде его относится к циркадным ритмам: новым экологическим фактором стало использование электроосвещения, продлившего световой день. Аллергизация населения — одна из основных новых черт в измененной структуре патологии людей в городской среде.

      Аллергия — извращенная чувствительность или реактивность организма к тому или иному веществу, так называемому аллергену (простые и сложные минеральные и органические вещества). Онкологическая заболеваемость и смертность — одна из наиболее показательных медицинских тенденций неблагополучия в данном городе или, например, в зараженной радиацией сельской

      Болезни цивилизации - это результат безответственного и неправильного использования возможностей, предоставленных человеку цивилизацией, а потому в той или иной степени могут быть предотвращены.

      К так называемым болезням цивилизации относят ишемическую болезнь сердца, гипертоническую болезнь, язвенную болезнь желудка и двенадцатиперстной кишки, неврозы, диабет.

      Причинами болезни цивилизации являются постоянное и все возрастающее загрязнение окружающей среды, уменьшение ареала естественных биогеоценозов, агломерация в городах, психосоциальные нагрузки, злоупотребление психотропными средствами, интенсификация труда, увеличение количества, сложности и многообразия раздражителей и их влияний, сидячий образ жизни и др. Многие болезни цивилизации обусловлены избыточным питанием.

      Вопрос2 - ТЕОРИИ ВОСПАЛЕНИЯ


      Р. Вихров (1859) обратил внимание на повреждение паренхимы органов (дистрофические изменения клеток) при воспалении и создал так называемую клеточную теорию воспаления. На смену этой теории пришла сосудистая теория Ю. Конгейма (1887), который основное значение в патогенезе воспаления придавал реакции мелких сосудов,

      нарушению микроциркуляции. Он считал, что расширение приводящих сосудов и прилив артериальной крови в очаг воспаления обусловливают появление жара и покраснение тканей, увеличение проницаемости капилляров – припухлость, образование инфильтрата

      • сдавление нервов и возникновение боли, а все вместе – нарушение функции.

        . Мечниковым (1892 г.) биологическая теория воспаления. воспаление рассматривается как реакция приспособления и защиты организма от вредных факторов. И.И. Мечников развил учение о фагоцитозе и придавал ему большое значение в механизме борьбы макроорганизма с “агрессором

        В 1923 г. Шаде (H. Sehade) выдвинул физико-химическую теорию воспаления. По его мнению основой воспаления является тканевой ацидоз, гипероксия и гипертония в очаге повреждения, которыми и определяется в дальнейшем вся совокупность изменений при воспалении.

        Рикер (C. Ricker, 1924г.), рассматривая феномены воспаления как проявления сосудисто-нервных расстройств, предложил нервно-сосудистую теорию воспаления.

        Нейрогуморальная теория патогенеза воспаления построена на том что , воспаление возникает в результате содружественой работы гуморальной и нервных систем . В результате этого происходит –

        активацией симпатоадреналовой (САС) и снижением активности парасимпатической системы;

  • собирательное понятие первичный гиперальдостеронизм объединяет ряд близких по

    image

    клиническим и биохимическим признакам, но различных по патогенезу заболеваний, в основе которых — чрезмерная продукция альдостерона корой надпочечников[1].

    Заболевание связано с опухолью илигиперплазией клубочковой зоны коркового вещества надпочечников. Наряду со стойким повышением артериального давления, при этом синдроме наблюдается уменьшение содержания в плазме калия (гипокалиемия), плазменной активности ренина, увеличение содержания натрия в плазме, повышение натрий-калиевого коэффициента.

    Этиология и патогенез

    Альдостерома - следствие образования опухоли надпочечников, клетки которой обладают избирательной способностью образовывать и высвобождать альдостерон.

    Избыточная секреция альдостерона через рост реабсорбции натрия из просвета канальцев нефронов увеличивает общее содержание натрия в организме, а значит повышает объем внеклеточной жидкости.

    Одновременно с ростом реабсорбции натрия растут экскреция почками калия и протонов, а также образование и реабсорбция бикарбонатных анионов. В результате развиваются гипокалиемия и метаболический алкалоз. Гипокалиемия вызывает мышечную слабость вплоть да параличей , сердечные аритмии, а также падение концентрационной способности почек. Падение концентрационной способности почек в результате гипокалиемии повышает объем выделяемой мочи и служит причиной никтурии, то есть частого мочеиспускания по ночам, препятствующего нормальному сну.

    Вопрос4 -

    Тромбоцитопении

    могут являться самостоятельными заболеваниями или симптомами различных заболеваний, наследственно обусловленных или приобретенных. Они развиваются в результате:

    • подавления тромбоцитарного ростка;

    • интенсификации процесса разрушения тромбоцитов;

    • вовлечения тромбоцитов в процесс генерализованного тромбообразования;

    • повышенного депонирования тромбоцитов в селезёнке;

    • массивных кровопотерь. Наследственные ТП подразделяются на:

    • обусловленные недостаточным числом мегакариоцитов в костном мозге (синдром Фанкони, циклическая амегакариоцитарная ТП и др.);

    • обусловленные неэффективным тромбоцитопоэзом вследствие дефекта синтеза тромбопоэтина или дистрофии мегакариоцитов (синдром «серых» тромбоцитов, аномалия Мея – Хегглина и др.).

      Приобретенные ТП бывают:

    • костномозговые, обусловленные снижением интенсивности процесса продуцирования тромбоцитов в костном мозге: гипо- и аплазия гемопоэза, воздействие ионизирующего излучения, химических веществ – бензола, уретана, антибиотиков, цитостатиков, алкоголя; замещение костного мозга опухолевой тканью (лейкозы, лимфомы метастазы солидных опухолей); неэффективный тромбоцитопоэз (В12 – фолиевые анемии);

    • обусловленные повышенной внекостномозговой деструкцией тромбоцитов: иммунные ТП (бактериальные, вирусные, грибковые, медикаментозные, пищевые, посттрансфузионные и др.), аутоиммунные (идиопатические, при лимфопролиферативных заболеваниях) и неиммунные ТП – синдром гиперспленизма (при лейкозах, туберкулёзе, саркоидозе, малярии, брюшном тифе и др.); следствие механической травматизации тромбоцитов (катетеры, протезы клапанов сердца, экстракорпоральное кровообращение);

    • обусловленные повышенным потреблением тромбоцитов: коагулопатии потребления (ГУС, тромбоцитопеническая пурпура – болезнь Мошковиц, геморрагический васкулит и др.), тромбофилии;

    • периферические, возникающие вследствие разведения (в том числе постгеморрагические) и перераспределения.

    Тромбоцитопении проявляются:

    а) в костном мозге: гиперплазия, увеличение числа мегакариобластов и мегакариоцитов, что бывает при интенсивном разрушении или генерализованном

    «потреблении» тромбоцитов; гипоплазия – при лейкозах, лучевой болезни, метастазах опухолей (не относящихся к гемобластозам); снижение активности ферментов – лактатдегидрогеназ, глюкозо-6-фосфатдегидрогеназ и др. в мегакариобластах и мегакариоцитах, что уменьшает продолжительность жизни тромбоцитов.

    б) в периферической крови – уменьшение числа тромбоцитов и увеличение их размеров при нормальном количестве эритроцитов, Hb, лейкоцитов; при кровотечениях возможно развитие анемии.

    в) в системе гемостаза – снижение концентрации и/или активности тромбоцитарных факторов свертывания; увеличение длительности кровотечения; снижение степени ретракции сгустка крови; развитие геморрагического синдрома.

    ИММУННАЯ ТРОМБОЦИТОПЕНИЯ ПОТРЕБЛЕНИЯ — ИММУННАЯ ТРОМБОЦИТОПЕНИЧЕСКАЯ ПУРПУРА (ИТП)

    ИТП — группа заболеваний, объединённых по принципу единого патогенеза тромбоцитопении. При данной патологии снижается продолжительность жизни тромбоцитов до нескольких часов, что обусловливается действием антител или другими иммунными механизмами их разрушения.

    Выделяют аутоиммунную и гаптеновую формы ИТП.

    Аутоиммунные формы бывают симптоматические (при системных заболеваниях соединительной ткани, хроническом лимфолейкозе, лимфогранулематозе, лимфомах и др.) и идиопатические (без связи с какими-либо предшествующими заболеваниями). К последним относится болезнь Верльгофа, характеризующаяся хроническим течением, обязательным наличием в костном мозге мегакариоцитоза, гигантских тромбоцитов и антитромбоцитарных антител.

    Гаптеновые формы связаны с действием некоторых лекарственных средств (хинина, хинидина, препаратов золота и др.).

    Клиническая картина ИТП обусловливается нарушением сосудисто- тромбоцитарного гемостаза. Для неё характерны множественные петехиальные высыпания, синяки различной формы на коже, частые носовые, маточные кровотечения, иногда — из мочевыводящих путей и ЖКТ. Причём кровотечения возникают спонтанно, синяки провоцируются незначительными ушибами. При повторных кровотечениях заболевание может осложниться развитием железо-дефицитной анемии; возможно кровоизлияние в головной мозг.

    НЕИММУННЫЕ ТРОМБОЦИТОПЕНИИ ПОТРЕБЛЕНИЯ: ТРОМБОТИЧЕСКАЯ ТРОМБОЦИТОПЕНИЧЕСКАЯ ПУРПУРА (ТТП) — БОЛЕЗНЬ МОШКОВИЦ

    И ГЕМОЛИТИКО-УРЕМИЧЕСКИЙ СИНДРОМ (ГУС) — СИНДРОМ ГАССЕРА

    Инициальным фактором развития ТТП и ГУС являются бактериальная (Shigella dysenteriae, энтеротоксичные штаммы Е. Coli) и вирусная инфекции, иммунизация, оральные контрацептивы, системные заболевания соединительной ткани. ТТП встречается в любом возрасте, ГУС — в детском.

    Предполагается, что повреждение эндотелия капилляров микробными токсинами и цитокинами приводит к выбросу из эндотелиоцитов большого количества мультимеров фактора Виллебранда, что ведёт к агрегации тромбоцитов и образованию гиалиновых тромбов в сосудах микроциркуляторного русла, к дальнейшим прогрессирующим поражениям стенки сосудов, к развитию гемолиза эритроцитов.

    В гиалиновых тромбах содержатся, помимо тромбоцитов, нити фибрина, однако генерализованной гиперактивации плазменных факторов системы гемостаза не происходит, что отличает данную патологию от ДВС-синдрома.

    При ТТП отложение гиалиновых тромбов носит системный характер, а при ГУС поражаются преимущественно микрососуды почек, что обусловливает развитие острой почечной недостаточности.

    Клиническая картина ТТП и ГУС проявляется:

    1. тромбоцитопенией потребления, сопровождающейся кровотечением из носа, желудочно-кишечного тракта (рвота цвета кофейной гущи, кровавый понос), кожной петехиально-экхимозной сыпью;

    2. микроангиопатическои гемолитической анемией;

    3. лихорадкой;

    4. перемежающимися неврологическими нарушениями;

    5. почечной недостаточностью (олиго-, анурией, азотемией). При лабораторной диагностике ТТП и ГУС выявляются:

    • тромбоцитопения (20-40-109/л);

    • признаки микроангиопатическои гемолитической анемии (снижение содержания в крови эритроцитов и гемоглобина, ретикулоцитоз; в мазке крови — шистоциты);

    • повышение в крови уровня непрямого билирубина;

    • увеличение времени кровотечения;

    • АПТВ, фибриноген, продукты деградации фибрина в норме, что используется при дифференциальной диагностике с ДВС-синдромом;

       

       

       

      БИЛЕТ 26


      Вопрос 1 - .Гипосенсибилизация - состояние пониженной чувствительности организма к аллергену, а также комплекс мероприятий, направленных на снижение этой чувствительности. Применявшийся ранее термин «десенсибилизация» (лат. приставка de-, означающая уничтожение + сенсибилизация) не точен, т.к. добиться полной нечувствительности организма к аллергену практически невозможно. Различают специфическую и неспецифическую гипосенсибилизацию.

      Виды гипосенсибилизации

      В зависимости от применяемых средств различают специфическую и неспецифическую гипосенсибилизацию. ----

      Специфическая гипосенсибилизация проводится путём введения больному экстракта аллергена, к которому имеется повышенная чувствительность. Осуществляется введением малых, субпороговых доз аллергенов — растворимых бактериальных антигенов, аутовакцин, гетерогенных и комбинированных вакцин и

      др. Гипосенсибилизация специфическая проводится в течение длительного времени, вследствие чего возникает иммунологическая толерантность. В зависимости от способа введения аллергена различают несколько видов гипосенсибилизации: оральную, парентеральную (подкожную, внутрикожную), посредством „кожных квадратов”, эндоназальную и ингаляционную. Основной эффект гипосенсибилизации состоит в выработке бло-кирующих антител под действием вводимого антигена, а также в нейтрализации циркулирующих в крови антител этим антигеном.

      Гипосенсибилизация проводится у лиц с положительными к данному аллергену аллергическими диагностическими пробами, аллергическим анамнезом.

      Гипосенсибилизация применяется при поллинозе, астме бронхиальной, аллергии на укусы насекомых (особенно при наличии в анамнезе больного анафилактического шока), аллергическом дерматите, экземе, пищевой аллергии, аллергии лекарственной и др.

      Гипосенсибилизация специфическая противопоказана при обострении основного заболевания, коллагенозах, активной фазе ревматизма, острых инфекционных болезнях, злокачественных новообразованиях и др.). При гипосенсибилизации возможны местные и общие (системные) побочные реакции (инфильтраты на месте инъекции, конъюнктивит, крапивница, реже — анафилактический шок).

      Патогенез специфической Г. сложен и полностью еще не изучен. Имеет значение выработка блокирующих антител к введенному аллергену, которые, связывая попавший в организм аллерген, предупреждают реакцию его с реагинами (lgE), фиксированными на поверхности лаброцитов (тучных клеток). В процессе специфической Г. снижается синтез реагинов, нарастает количество Т-лимфоцитов, усиливается функция коры

      надпочечников, повышается титр комплемента и пропердина, улучшается белковый обмен.

      Для проведения специфической Г. необходимо выявить аллерген (или группу аллергенов), вызвавших данное заболевание, что возможно с помощью изучения аллергологического анамнеза, кожных аллергических и провокационных проб, определения специфического иммуноглобулина класса Е. Если предотвратить контакт больного с аллергеном не представляется возможным (при аллергии к домашней пыли, пыльце растений, микробам), прибегают к специфической Г., которую проводят во время ремиссии болезни (например, бронхиальной астмы, крапивницы), после санации очагов хронической инфекции (синусит, тонзиллит, кариес и др.).

      ---- Неспецифическая гипосенсибилизация проводится путём назначения ряда лекарственных препаратов (иммуносупрессантов, глюкокортикоидов, препаратов кальция и др.), физиотерапевтического, курортного лечения. Неспецифическая гипосенсибилизация, основанная на изменении реактивности организма и создании условий, при которых тормозится действие аллергена, вызвавшего данное заболевание, достигается в результате применения препаратов салициловой кислоты и кальция, аскорбиновой кислоты, введения гистаглобулина, плазмы и др. С целью неспецифической Г. широко применяют различные физиотерапевтические процедуры (УФ-облучение, электрофорез растворов новокаина, кальция, магния и йода, диатермию, УВЧ, индуктотермию, микроволновую терапию), санаторно-курортное лечение, занятия лечебной физкультурой и спортом.

      Вопрос2.

      Шок - остроразвивающаяся общая рефлекторная патологическая реакция организма

      на действие экстремальных раздражителей, характеризующаяся резким угнетением всех

      жизненных функций и имеющая в своей основе глубокие парабиотические нарушения в

      ЦНС.

      Независимо от причин возникновения шок проявляется комплексом нарушений гемодинамики, для которого характерны уменьшение артериального давления, минутного объема сердца, венозного возврата к сердцу, объема циркулирующей крови, объемной скорости органного кровотока; нарушение реологических свойств крови (агрегация форменных элементов, повышение вязкости крови). Комплекс указанных нарушений может быть обозначен как острая недостаточность кровообращения.

      В соответствии с законами гемодинамики первичное нарушение одних ее показателей при любой разновидности шока ведет вторично к нарушениям всех остальных.

      В основе развития расстройств кровообращения при шоке могут лежать следующие механизмы.

      1. Уменьшение объема циркулирующей крови: 1) кровопотеря (геморрагический шок); 2) потеря плазмы крови при обширном экссудативном воспалении (ожоговый шок);

          1. выход жидкости из кровеносных сосудов в ткани при генерализованном повышении проницаемости сосудов (анафилактический шок); 4) обезвоживание (ангидремический шок); 5) перераспределение крови в сосудистом русле (тромбоз и эмболия магистральных вен).

      2. Уменьшение минутного объема сердца: 1) нарушение сократительной функции сердца (инфаркт миокарда); 2) тампонада сердца (разрыв сердца, экссудативный перикардит); 3) аритмии (фибрилляция желудочков).

      3. Уменьшение общего периферического сопротивления — генерализованное расширение сосудов: 1) падение нейрогенного тонуса артериол (болевые формы шока); 2) уменьшение базального тонуса сосудов под действием биологически активных веществ (анафилактический, панкреатический шок) или токсических продуктов (травматический, турникетный, инфекционно-токсический шок).

      4. Нарушения реологических свойств крови. 1) синдром внутрисосудистого диссеминированного свертывания крови (панкреатический шок); 2) агрегация форменных элементов крови (септический, инфекционно-токсический шок); 3) сгущение крови — гемоконцентрация (ангидремический шок).

      В большинстве тканей организма обнаруживают следующие типичные нарушения.

      1. Резко снижается эффективность активного транспорта натрия и калия через клеточные мембраны. В результате ионы натрия и хлора накапливаются в клетках, а ионы калия их покидают. Кроме того, начинается клеточное набухание.

      2. Происходит резкое угнетение активности митохондриальных процессов в клетках печени, а также в клетках многих других тканей организма.

      3. В клетках многих тканей начинается разрушение лизосом. Происходит выход в цитоплазму лизосомальных ферментов гидролиз, и разрушение клеточных структур.

      4. На поздних стадиях шока в клетках происходит резкое угнетение метаболизма питательных веществ, таких как глюкоза. Действие многих гормонов угнетается, в частности происходит практически 100-процентное угнетение действия инсулина. Перечисленные нарушения внутриклеточных процессов приводят к тяжелому повреждению многих органов и тканей организма, особенно: (1) печени, с угнетением основных метаболических и дезинтоксикационных функций; (2) легких, с развитием отека легких и снижением оксигенации крови; (3) сердца, с резким угнетением сократительной функции миокарда.

        Некроз тканей при тяжелом шоке. Развитие очагов некроза в связи с очаговым нарушением местного кровотока органов. Не все клетки организма одинаково страдают от шока, т.к. одни ткани лучше снабжаются питательными веществами, чем другие.

        Например, клетки, расположенные вблизи артериального конца капилляра, находятся в лучших условиях, чем клетки, расположенные вблизи венозного конца капилляра.

        Следовательно, наибольший дефицит питательных веществ ожидается в зоне, окружающей венозный конец капилляров.

        Структурные повреждения обнаруживаются также в почках, особенно в эпителии почечных канальцев, что приводит к развитию почечной недостаточности и смерти от уремии. Ишемические повреждения легочной ткани приводят к развитию так называемого респираторного дистресса и смерти.

        Ацидоз при шоке. Метаболические расстройства, которые происходят в тканях во время шока, вызывают развитие ацидоза. Он развивается в результате недостатка кислорода в тканях и снижения эффективности окислительного метаболизма питательных веществ. Клетки начинают использовать энергию, которая освобождается благодаря анаэробному гликолизу, вследствие этого в крови накапливается избыток молочной кислоты. Кроме того, при снижении кровотока в тканях нарушается нормальный процесс удаления углекислого газа.

        Углекислый газ в клетках взаимодействует с водой, образуя большое количество угольной кислоты, которая вступает в реакцию с другими внутриклеточными веществами, что приводит к накоплению различных кислых продуктов(местный и генерализованный ацидоз)

        Вопрос4

        Холестатический синдром — уменьшение

        поступления жёлчи в двенадцатиперстную кишку из-за нарушения её образования, экскреции или выведения вследствие патологических процессов, которые могут быть локализованны на любом участке от синусоидальных мембран гепатоцитов до фатерова (дуоденального) соска. Во многих случаях холестаза механическая блокада желчевыводящей системы, ведущая к механической желтухе, отсутствует.

        Холестатический синдром подразделяется на внутрипечёночный и внепечёночный.

        Внутрипечёночный связан с нарушениями синтеза компонентов жёлчи и их поступлением в жёлчные капилляры. Причины: внутриутробная инфекция, сепсис, эндокринные расстройства (гипотиреоз), хромосомные расстройства (трисомия 13,17/18), лекарственная терапия, врождённые нарушения метаболизма (галактоземия,муковисцидоз, недостаточность альфа1-антитрипсина), семейные синдромы (синдром Алажилля и др.).

        Основными факторами патогенеза внутрипеченончного холестаза на уровне гепатоцитов являются:

        а) снижение проницаемости мембран, в частности, при нарастании в них соотношения холестерин/фосфолипиды и замедление

        скорости метаболических процессов;

        б) подавление активности мембраносвязанных ферментов

        (АТФ-азы и других, принимающих участие в процессах транспорта через мембрану);

        в) перераспределенеие или снижение энергетических ресурсов клетки со снижением энергетического обеспечения экскреторной

        функции;

        г) снижение метаболизма желчных кислот и холестерина.

        Внепечёночный связан с нарушением пассажа по желчевыводящим путям в связи с нарушением структуры и функции желчевыводящей системы: атрезия желчевыводящих путей, киста холедоха, другие аномалии желчевыводящих путей, холедохолитиаз, сдавление протоков, синдром сгущения жёлчи, дискинезия желчевыводящих путей.


         

         

         

        Билет 27

         

         1вопрос

        Микроциркуляция — упорядоченное движение крови и лимфы по микрососудам, транскапиллярный перенос плазмы и форменных элементов крови, перемещение жидкости во внесосудистом пространстве.

        Микроциркуляторное русло. Совокупность артериол, капилляров и венул составляет структурно-функциональную единицу сердечно-сосудистой системы — микроциркуляторное (терминальное) русло. Терминальное русло организовано следующим образом: от терминальной артериолы отходит метартериола, распадающаяся на образующие сеть анастомозирующие истинные капилляры; венозная часть капилляров открывается в посткапиллярные венулы. В месте отделения капилляра от артериол имеется прекапиллярный сфинктер — скопление циркулярно ориентированных ГМК. Сфинктеры контролируют локальный объём крови, проходящий через истинные капилляры; объём же крови, проходящей через терминальное сосудистое русло в целом, определяется тонусом ГМК артериол. В микроциркуляторном русле присутствуют артериоловенулярные анастомозы, связывающие артериолы непосредственно с венулами или мелкие артерии с мелкими венами (юкстакапиллярный кровоток). Стенка сосудов анастомоза содержит много ГМК. Артериовенозные анастомозы в большом количестве присутствуют в некоторых участках кожи, где они играют важную роль в терморегуляции (мочка уха, пальцы). К микроциркуляторному руслу относят также мелкие лимфатические сосуды и межклеточное пространство.

        Основные формы нарушений микроциркуляции:

        1. Артериальная гиперемия – увеличение кровенаполнения органа или ткани вследствие увеличения количества крови, протекающего через его расширенные сосуды.

        2. Венозная гиперемия – увеличение кровенаполнения органа или ткани вследствие затруднения оттока крови из него.

        3. Ишемия – уменьшение кровенаполнения органа или ткани вследствие затруднения притока ее по артериям.


      2. Артериальная гиперемия: определение, причины, механизмы возникновения Артериальная гиперемия - увеличение кровенаполнения органа или ткани

      вследствие увеличения количества крови, протекающего через его расширенные сосуды.

      Причины возникновения:

      По происхождению а) экзогенные:

      = инфекционные;

      = неинфекционные По характеру:

      = физические – очень высокая или низкая температура окружающего воздуха, механическая травма

      = химические – кислоты, щелочи, спирты и др.

      = биологические – БАВ (аденозин, простагландины, ацетилхолин, продукты жизнедеятельности бактерий, паразитов, риккетсий и некоторые другие токсины).

      Механизмы возникновения: А. Нервные механизмы.

      1. За счет истинных рефлексов – в их осуществлении участвуют рецепторы, афферентные волокна, центральные нервные механизмы, эфферентные волокна.

      2. За счет аксон-рефлекса – эти рефлексы замыкаются в пределах разветвлений одного аксона. Афферентные импульсы не распространяются в ЦНС, а переходят на другие ветви и, достигая сосудов, вызывают их расширение.

      Б. Гуморальные механизмы. К веществам, которые обладают вазорасширяющим действием, относятся:

      = ацетилхолин;

      = гистамин;

      = брадикинин;

      = ионы водорода;

      = молочная кислота и другие слабые органические кислоты;

      = аденозин.

      Состояние микроциркуляции при артериальной гиперемии. В состоянии артериальной гиперемии приводящие артериолы расширены, в них увеличено количество крови. Отсюда происходят следующие изменения гемодинамических показателей:

      1. Артерио-венозная разность давлений увеличена за счет повышения гидростатического давления в артериальной части русла.

      2. Сопротивление кровотоку в артериальной части русла снижено за счет расширения приводящих артериол.

      3. Объемная скорость кровотока повышена за счет увеличения артерио- венозной разности давлений и снижения сопротивления кровотоку.

      4. Линейная скорость кровотока повышена за счет увеличения артерио- венозной разности давлений и снижения сопротивления кровотоку.

      5. Общая площадь поперечного сечения капиллярного русла увеличена за счет открытия ранее не функционирующих капилляров и артерио-венозных шунтов. Когда открываются ранее не функционирующие капилляры, то сначала они содержат только плазму и функционируют как плазматические. Затем в них проникают форменные элементы крови и по вновь открывшимся капиллярам начинает циркулировать цельная кровь.

      Признаки артериальной гиперемии:

      1. Покраснение органа или ткани. Связано с повышением притока артериальной крови и «артериализации» венозной крови (в венозной крови содержится больше, чем обычно оксигемоглобина).

      2. Повышение температуры органа или ткани. Связано с повышенным притоком более теплой артериальной крови и повышением интенсивности в тканях обмена веществ.

      3. Увеличение лимфообразования и лимфооттока. При артериальной гиперемии в артериальной части русла увеличивается гидростатическое давление. Отсюда, увеличивается количество выпотевающей в ткани плазмы. Эта жидкость поступает в лимфатические сосуды (увеличение лимфообразования) и удаляется из ткани (повышение лимфооттока). Таким образом, благодаря явлению увеличения лимфообразования и лимфооттока в гиперемированном органе не образуется отека. Отек для артериальной гиперемии не характерен.

      4. Увеличение объема органа и тургора тканей. Связано с возрастанием крове- и лимфонаполнения.

      Последствия и значение физиологической артериальной гиперемии:

      1. Активация специфической функции органа или ткани.

      2. Потенцирование неспецифической функции – например, повышение местного иммунитета, т.к. при артериальной гиперемии повышается приток иммуноглобулинов, лимфоцитов, фагоцитов.

      3. Гипертрофия и гиперплазия структурных элементов клеток и тканей – это явление используется в медицине. Усиление гипертрофии и регенерации достигается такими методами, как: компрессы, банки, горчичники. Артериальная гиперемия, которая развивается в таких случаях, называется индуцированной и применяется при ишемии органов, нарушении трофики, снижении активности местного иммунитета.

      Последствия и значение патологической артериальной гиперемии:

      1. Перерастяжение и микроразрывы стенок сосудов микроциркуляторного русла.

      1. Микро- и макрокровоизлияния в окружающие сосуд ткани.

      2. Кровотечения наружные и внутренние.

      3. Виды артериальной гиперемии

      артериальной гиперемии 1)физиологические; 2) патологические.

      Критерий дифференцировки: адекватность артериальной гиперемии изменениям функций органов и тканей.Физиологическая артериальная гиперемия – та, которая развивается в связи с увеличением уровня функции органа или ткани.

      Классификация физиологических артериальных гиперемий:

      1. Рабочая артериальная гиперемия (=функциональная) – в мышцах при повышении работы, в поджелудочной железе во время пищеварения, в миокарде при работе и увеличении коронарного кровотока.

      2. Реактивная артериальная гиперемия – увеличение кровотока после его кратковременного ограничения. Развивается в почках, головном мозге, кишках, мышцах.

      Патологическая артериальная гиперемия – та, которая не сопровождается увеличением уровня функции.Примеры подобных раздражителей – химические вещества, токсины, продукты нарушенного обмена при ожогах и воспалениях).

      Классификация патологических артериальных гиперемий:

      1. Ангионевротическая (=нейрогенная).

      2. Постишемическая.

      3. Коллатеральная.

      4. Вакатная.

      5. Воспалительная.

      6. Метаболическая.

      7. Гиперемия на почве артерио-венозного свища. Механизмы развития патологической артериальной гиперемии:

      1. Ангионевротическая АГ. Среди ангионевротических (=нейрогенных) АГ выделяют нейротонические и нейропаралитические. В основе деления нейрогенных гиперемий на нейротонические и нейропаралитические лежит факт влияния вегетативной НС на сосудистую стенку. Симпатические влияния суживают сосуды, парасимпатические

        • расширяют сосуды. Отсюда:

          а) нейропаралитическая гиперемия – развивается при параличе, блокаде симпатических влияний. Нейропаралитическую гиперемию можно наблюдать в клинике и в эксперименте на животных при перерезке симпатических волокон и нервов, при нарушении целостности смешанных нервов, при действии симпатолитиков и ганглиоблокаторов.

          б) нейротоническая гиперемия – развивается при усилении парасимпатических влияний. Впервые воспроизведена К. Бернаром путем раздражения chorda timpani – ветви n.facialis, состоящей из парасимпатических волокон. В результате раздражения возникала гиперемия и усиление секреции поднижнечелюстной слюнной железы. Холинэргические механизмы (влияние ацетилхолина) развития АГ возможны в органах и тканях (язык, наружные половые органы и т.д.), сосуды которых иннервируются парасимпатическими нервными волокнами

      2. Коллатеральная АГ. Возникает в результате затруднения кровотока по магистральному артериальному стволу, закрытому тромбом или эмболом.

      3. Постишемическая АГ. Развивается, когда фактор, ведущий к сдавлению артерии и малокровию ткани, быстро устраняется. К таким факторам относятся: опухоль, лигатура, скопление жидкости в плевральной и других полостях. В таких случаях обескровленные сосуды быстро расширяются и переполняются кровью, что может привести к разрыву сосуда, кровоизлияниям и малокровию других органов вследствие перераспределения крови. Механизм постишемической АГ: в ишемизированной ткани в связи с недостатком кислорода происходит смена аэробного способа распада глюкозы на анаэробный. Накапливаются продукты анаэробного гликолиза: молочная кислота, ПВК, трикарбоновые кислоты цикла Кребса. Орг. Кислоты и водород (продукт диссоциации) являются гуморальными вазодилататорами.

      4. Вакатная АГ. Развивается в связи с уменьшением барометрического давления. М.б.:

        Общая вакатная АГ – при быстром снижении барометрического давления. Пример: у водолазов и кессонных рабочих при быстром подъеме из области повышенного давления. В этом случае вакатная АГ сочетается с газовой эмболией, тромбозом сосудов и кровоизлияниями.

        Местная вакатная АГ – при постановке медицинских банок.

      5. Метаболическая АГ. Обусловлена действием метаболитов на неисчерченные мышечные элементы сосудов. При этом расширение сосудов не зависит от иннервационных влияний.

        К вазодилатирующим метаболитам относятся:

        = недостаток кислорода;

        = избыток углекислоты;

        = неспецифические метаболиты и неорганические ионы (молочная кислота, орг. кислоты цикла Кребса, АТФ, АДФ, аденозин, ионы калия.);

        = БАВ (брадикинин, серотонин, гистамин, простагландины, немедиаторный Ах, ГАМК);

        = гормоны;

        = сдвиг РН в кислую сторону.

      6. АГ на почве артерио-венозного свища. В том случае, когда образуется соустье между артерией и веной и артериальная кровь устремляется в вену.

      Ишемия – уменьшение кровенаполнения органа или ткани в результате затруднения притока крови по приносящим сосудам.

      Причины увеличения сопротивления току крови в артериях – 3 (три) группы причин:

      1. Компрессия (сдавление извне) приносящих сосудов (опухоль, рубец, лигатура, инородное тело). Такая ишемия называется компрессионной.

      2. Обтурация приносящих сосудов – в результате полного или частичного закрытия изнутри просвета артерии тромбом или эмболом.

      3. Ангиоспазм приносящих артерий – в результате вазоконстрикции сосудистых гладких мышц. Механизмы спазма артерий: а) внеклеточный – связан с длительной циркуляцией в крови вазоконстрикторных веществ. Это: катехоламины, серотонин; б) мембранный – связан с нарушением процесса реполяризации мембран гладкомышечных клеток; в) внутриклеточный - нарушен внутриклеточный перенос ионов кальция, отсюда нерасслабляющееся сокращение гладкомышечных клеток.

      Симптомы ишемии:

      1. Уменьшение диаметра и количества видимых артериальных сосудов в связи с их сужением и уменьшением кровенаполнения.

      2. Побледнение тканей или органов в связи со снижением кровенаполнения и уменьшением числа функционирующих капилляров.

      3. Снижение величины пульсации артерий в результате наполнения их кровью.

      4. Понижение температуры ишемизированной ткани или органа следствие уменьшения притока теплой артериальной крови, в дальнейшем уменьшение метаболизма.

      5. Снижение лимфообразования в результате понижения перфузионного давления в тканевых микрососудах.

      6. Уменьшение объема и тургора тканей и органов вследствие недостаточности их крове- и лимфонаполнения.

      Последствия ишемии. Главный патогенетический фактор ишемии – гипоксия. В дальнейшем: снижение недоокисленных продуктов, ионов, БАВ. Отсюда вытекает:

      1. Снижение специфических функций.

      2. Понижение неспецифических функций и процессов: местных защитных реакций, лимфообразования, пластических процессов.

      3. Развитие дистрофических процессов, гипотрофии и атрофии тканей.

      4. Некрозы и инфаркты.

      Значение уровня функционирования ткани и органа, шунтирования и коллатерального кровообращения в исходе ишемии. Инфаркт как следствие ишемии.

      Венозная гиперемия – это увеличение кровенаполнения органа или ткани вследствие механического препятствия оттоку венозной крови от органа или ткани. Это м.б. следствием:

      1. Сужения просвета венулы или вены при ее: а) компрессии (отечная жидкость, опухоль, рубец, жгут и т.д.); б) обтурации (тромб, эмбол,опухоль).

      2. Сердечной недостаточности, когда сердце не перекачивает кровь из большого круга в малый и повышается центральное венозное давление в крупных венах.

      3. При патологии венозных сосудов, которая сопровождается низкой эластичностью венозных стенок. Эта патология обычно сопровождается образованием расширений (варикозов) и сужений.

      Механизм развития венозной гиперемии. Заключается в создании механического препятствия оттоку венозной крови от тканей и нарушении ламинарности свойств крови.

      Макросимптомы венозной гиперемии:

      1. Увеличение числа и диаметра видимых венозных сосудов в связи с увеличением их просвета.

      2. Цианоз органов и тканей. Синюшный оттенок связан с: а) увеличением в них количества венозной крови; б) увеличением содержания в ней бескислородных форм гемоглобина (результат выраженного перехода кислорода в ткани в связи с медленным ее током по капиллярам).

      3. Снижение температуры органов и тканей вследствие: а) увеличения в них объема венозной крови (в сравнении с более теплой артериальной); б) уменьшения интенсивности тканевого метаболизма.

      4. Отек тканей и органов в результате увеличения кровяного давления в капиллярах, посткапиллярах и венулах. При длительной венозной гиперемии отек потенцируется за счет «включения» осмотического, онкотического и мембраногенного патогенетических факторов.

      5. Кровоизлияния в ткань либо кровотечения (внутренние и наружные) в результате перерастяжения и микроразрывов стенок венозных сосудов.

      Стаз – это замедление и остановка крови в микрососудах органа или ткани.

      Причины: 1) ишемия; б) факторы, вызывающие агрегацию и агглютинацию клеток крови в микрососудах органа или ткани.

      Разновидности стаза условно подразделяют на 3 (три) группы:

      1. Истинный капиллярный стаз – его формирование начинается с активации и агрегации клеток крови, адгезии их к сосудистой стенке.

      2. Ишемический стаз – развивается в результате: а) полного прекращения притока крови из соответствующих артерий в капиллярную сеть; б) замедлением скорости кровотока; в) турбулентным характером кровотока (смена ламинарности на турбулентность приводит к активации, агрегации и адгезии форменных элементов крови).

      3. Венозно-застойный стаз – является результатом: а) замедления оттока венозной крови; б) сгущения крови; в) изменения вязкости; г) повреждения клеток с освобождением и активацией факторов свертывания.

      Проявления и последствия стаза. Могут быть внешние и микроскопические.

      Внешние – в зависимости от вида стаза внешние признаки соответствуют признакам венозного застоя или ишемии.

      Микроскопические – в просветах капилляров неподвижные агреганты эритроцитов и других клеток крови. Величина просвета капилляров зависит от причины стаза. На фоне ишемии диаметр уменьшен. В условиях венозного застоя – просвет сосудов увеличен, имеется отек тканей и микрокровоизлияния.

      При быстром устранении причины стаза ток крови в сосудах микроциркуляторного русла восстанавливается и в тканях не развивается каких-либо существенных изменений.

      Длительный стаз обуславливает развитие дистрофических изменений в тканях и их гибель.

      Механизмы истинного капиллярного стаза. Непосредственная причина стаза – внутрисосудистая агрегация эритроцитов. Она м.б.: а) локальная; б) генерализованная.

      Факторы внутрисосудистой агрегации эритроцитов:

      1. Химические факторы, повреждающие стенки капилляров:

        = увеличение проницаемости сосудистой стенки и переход в ткани жидкостей, солей и низкодисперсных белков;

        = увеличение концентрации в крови крупнодисперсных белков (глобулинов и фибриногена;

        = адсорбция этих белков на поверхности эритроцитов уменьшает их поверхностный потенциал;

        = агрегация эритроцитов.

      2. Химические повреждающие агенты, проникающие внутрь капилляров. Изменяют физико-химические свойства эритроцитов и вызывают их агрегацию

      3. Функциональное состояние артериол:

      = сужение приводящих артериол – способствует агрегации за счет замедления кровотока;

      = выброс гистамина – угнетает агрегацию за счет ускорения кровотока.

      1. Классификация общих причин расстройств микроциркуляции


      2 вопрос

      Альтерации при воспалении. Виды альтерации


      image

      Термин «альтерация» означает раздражение и повреждение рецепторов, мембран, внутриклеточных органелл (особенно ядер, лизосом, митохондрий), целых клеток, межклеточного вещества, периферических (особенно терминальных), кровеносных и лимфатических сосудов. Альтерация — первое и непосредственное следствие действия флогогенного и патогенетических факторов. Она включает комплекс обменных, физико- химических, структурных и функциональных изменений в повреждённых и близлежащих тканях.

      Морфологически она проявляется различными формами и степенями дистрофии, паранекроза, некробиоза, некроза. Альтерация, как правило, становится пусковым звеном патогенеза развития различных патологических процессов, состояний и болезней.

      Различают два вида альтерации: первичную и вторичную.

      • Первичная альтерация возникает в ответ на прямое действие воспалительного (флогогенного) фактора и пролонгирует его патогенное действие. Степень и характер альтерации зависит от интенсивности и качества флогогенного фактора, а также от локализации и площади повреждения, реактивности и резистентности повреждённых структур и организма в целом.

      • Вторичная альтерация возникает под влиянием различных патогенетических факторов: как местных изменений (физико-химических факторов, количества и активности медиаторов воспаления, сосудистых реакций и др.), так и системных (нервной и гуморальной, в том числе эндокринной и иммунной) реакций.

      Зона первичной альтерации

      Причина формирования первичной альтерации: флогогенный фактор, действующий на ткань.

      Локализация первичной альтерации: место прямого контакта причины воспаления с тканью (эта зона — эпицентр очага воспаления).

      Основные механизмы первичной альтерации

      • Повреждение мембранных структур и внутриклеточных ферментов, а также структур межклеточного вещества.

      • Расстройства энергетического обеспечения функций и пластических процессов в повреждённой ткани.

      • Нарушения трансмембранного переноса и градиента ионов, соотношения их между собой, содержания жидкости внутри и за пределами клетки и в зоне альтерации в целом.

        Проявления первичной альтерации

        • Расстройства функции повреждённых, но ещё жизнеспособных участков ткани вне зоны некроза.

      • Некроз.

      • Значительные физико-химические изменения.

      • Различные формы дистрофии.

        Время начала развития вышеуказанных изменений колеблется в широком диапазоне и определяется особенностями флогогенного фактора, ткани или органа, подвергшегося его воздействию, реактивности организма. Тем не менее первые изменения выявляются сразу после воздействия причины воспаления на ткань.

        Зона вторичной альтерации Причины вторичной альтерации

      • Эффекты флогогенного агента (хотя за пределами эпицентра очага воспаления эффективность его патогенного воздействия значительно ниже).

      • Влияние факторов, вторично формирующихся в зоне первичной альтерации в связи с образованием медиаторов воспаления, развитием метаболических, физико-химических и дистрофических изменений.

        Локализация вторичной альтерации

        • Частично в месте контакта флогогенного агента с тканью (там, где сила его воздействия была минимальной).

      • В основном вокруг области первичной альтерации. Обычно площадь этой зоны значительно больше площади первичной.

        Характеристики зон первичной и вторичной альтерации в очаге воспаления Механизмы развития вторичной альтерации

        • Расстройства местных механизмов нервной регуляции в связи с повреждением тел нейронов, нервных стволов и/или их окончаний, синтеза, накопления и высвобождения из них нейромедиаторов.

      • Нарушение выброса нейромедиаторов (норадреналина, ацетилхолина и др.) из нервных терминалей симпатической и парасимпатической системы в очаге воспаления и стадийные изменения чувствительности тканей к нейромедиаторам в этом очаге.

      • Расстройства аксонного транспорта трофических и пластических факторов (углеводов, липидов, белков, адениннуклеотидов, нуклеиновых кислот, БАВ, ионов и других агентов) от тел нейронов к соматическим клеткам.

      • Стадийные изменения тонуса сосудов микроциркуляторного русла и в связи с этим — расстройства кровообращения

      • БАВ, поступающие в зону вторичной альтерации из зоны первичной альтерации, а также образующие за пределами очага воспаления.

        Проявления вторичной альтерации

        • Изменения структуры клеток и межклеточного вещества тканей, обычно обратимые (например, признаки повреждения клеток, архитектуры ткани и др.).

      • Расстройства метаболизма (выражается различными отклонениями в обмене веществ и развитии).

      • Умеренные отклонения физико-химических параметров (например, рН, осмоляльности жидкости, температуры тканей, трансмембранного распределения ионов).

      • Обратимые изменения функции тканей и органов.

        Время начала формирования вторичной альтерации. Как следует из характеристики механизмов развития изменений в зоне вторичной альтерации, её формирование несколько сдвинуто во времени (секунды—минуты) по сравнению со сроками формирования зоны первичной альтерации.

        Интенсивность формирования различных зон альтерации, выраженность изменений в них и соотношение их размеров существенно различаются и в каждом конкретном случае зависят от причины воспаления, структурных и функциональных особенностей ткани или органа, в котором развивается воспаление, реактивности организма и других условий.

        БАВ при воспалении-

        1 Протеазы и содержащие кислород свободные радикалы, высвобождающиеся из нейтрофилов, вызывают отсроченное повышение проницаемости в результате их повреждающего действия на эндотелиальные клетки.

        Вазоактивные амины: гистамин и серотонин, высвобождаются из тканевых базофилов и тромбоцитов. У человека гистамин играет более важную роль, чем серотонин; он действует главным образом на венулы, которые имеют H1-гистаминовые рецепторы. Оба эти амина вызывают вазодилятацию и увеличение проницаемости и, вероятно, являются главными агентами, действующими в начальном периоде острого воспалительного ответа. Уровень гистамина уменьшается быстро, в пределах часа после начала воспаления.

        Система кининов: брадикинин, конечный продукт системы кинина, формируется в результате действия калликреина на белок-предшественник в плазме (крупномолекулярный кининоген). Калликреин существует в виде неактивной формы (прекалликреин) в плазме и активируется активированным XII фактором (фактор Хагемана) системы свертывания крови. Брадикинин увеличивает сосудистую проницаемость и раздражает болевые рецепторы.

        Система свертывания крови: обратите внимание, что система свертывания, ведущая к образованию фибрина, также активируется фактором Хагемана (активированный фактор XII). Фибринопептиды, которые образуются в катаболизме фибрина (фибринолиз), также вызывают увеличение сосудистой проницаемости и являются хемотаксинами для нейтрофилов.

        При высвобождении арахидоновой кислоты фосфолипазами запускается ряд сложных реакций, в результате чего образуются простагландины, лейкотриены и другие медиаторы воспаления.

        Факторы нейтрофилов: протеазы и токсические кислородосодержащие свободные радикалы, образующиеся в нейтрофилах, как предполагается, вызывают эндотелиальное повреждение, что приводит к увеличению сосудистой проницаемости.


        Вопрос 3

        Пороки сердца - это врожденные или приобретенные дефекты стандартной архитектоники сердца или (и) нарушения строения, расположения, а также взаимосвязи его магистральных сосудов, с нарастающей вероятностью приводящие, как правило, к расстройствам внутрисердечной и (вследствие этого) системной гемодинамики.

        В этом определении необходимо обратить внимание на два следующие момента. Во-первых, пороки сердца приводят к расстройствам гемодинамики с нарастающей вероятностью, то есть, чем дольше существует порок сердца, тем сильнее прогрессируют гемодинамические расстройства. Во-вторых,пороки сердца приводят к расстройствам внутрисердечной и системной гемодинамики, как правило.Эта оговорка является необходимой потому, что при не резко выраженных некоторых пороках сердца, как, например, при незначительной митральной недостаточности, такие больные могут не испытывать никаких гемодинамических расстройств, профессионально заниматься спортом и даже становиться рекордсменами и чемпионами.

        image

        Пороки сердца делятся на врожденные и приобретенные (клапанные).


        Врожденные пороки сердца


        image

        Врожденные пороки сердца являются следствием его неправильного эмбрионального развития или следствием неспособности прогрессивного развития структур сердца в перинатальном или раннем постнатальном периоде. Нередко эти заболевания являются результатом единичной генной мутации (например, дефект межжелудочковой перегородки, пролапс митрального клапана, врожденная блокада сердца и т.д.). Однако, например, такой факт, что нередко врожденные пороки сердца наблюдаются лишь у одного из двух монозиготных близнецов, свидетельствует о том, что генетическая обусловленность пороков сердца - это вопрос не простой, включающий в себя, кроме генетического, еще ряд и других факторов.

        Врожденные пороки сердца чаще встречаются у детей мужского пола. Врожденные пороки сердца могут возникать и в результате нарушения нормальных изменений в системе кровообращения, которые наступают в момент рождения.

        У плода фактически существует только один круг кровообращения, поскольку его легкие не расправлены, легочные сосуды окружены жидкостью, имеют относительно толстые стенки и небольшой просвет. Вследствие этого кровь, попадающая из полых вен в правое предсердие, в значительной своей части сбрасывается в левое предсердие через овальное окно (отверстие в межпредсердной перегородке). Кровь из правого желудочка выбрасывается в легочную артерию и через артериальный (боталлов) проток сбрасывается в аорту. В норме, в момент рождения, а точнее, после первого крика новорожденного и перевязки пуповины, система кровообращения разделяется на два самостоятельных круга. Легочные сосуды новорожденного внезапно оказываются в воздушной среде, вследствие чего давление вокруг легочных

        сосудов снижается, и легочный кровоток усиливается. Плацентарное кровообращение характеризуется низким сосудистым сопротивлением. После перевязки пуповины этот шунт ликвидируется. В левом предсердии возрастает давление крови, что способствует закрытию овального отверстия. Замена плацентарного кровообращения на легочное вызывает внезапное повышение напряжения кислорода в артериальной крови, что в совокупности с изменением местной концентрации простагландинов приводит к спазму, а в будущем и к зарастанию боталлова протока.

        Врожденная легочная гипертензия, развивающаяся в связи с утолщением стенок легочных сосудов, а также из-за изменения содержания в легких, их сосудах и в крови в целом различных биологически активных веществ, могут привести к нарушению указанных выше соотношений давления в полостях сердца и его магистральных сосудах, в результате чего овальное окно либо боталлов проток, либо оба вместе не закроются, что и поведет к развитию пороков сердца.


        Врожденные пороки сердца белого типа


        image

        При пороках сердца «белого» типа в большой круг кровообращения поступает богатая кислородом кровь, вследствие чего цианоз не развивается. Эти пороки, в свою очередь, делятся на две группы: пороки сердца белого типа, сопровождающиеся сбросом крови «слева направо», и пороки сердца белого типа, не сопровождающиеся сбросом крови «слева направо».

        К первым относятся дефект межпредсердной перегородки (то есть незаращение овального окна), дефект межжелудочковой перегородки, открытый артериальный (боталлов) проток, а также комбинация указанных нарушений.

        Есть и некоторые другие, гораздо реже встречающиеся дефекты. Во всех случаях вследствие того, что давление в левых отделах сердца выше, чем в правых, происходит сброс крови «слева направо», то есть богатая кислородом кровь из левых отделов сердца попадает в малый круг кровообращения. В результате этого развивается диастолическая перегрузка правого желудочка и повышение легочного кровотока. При развитии такой ситуации (незаращение овального отверстия или артериального протока) в течение первых лет жизни у детей никакой сердечной симптоматики может не наблюдаться. Однако постепенно нарастающая перегрузка правых отделов сердца приводит к их гипертрофии, что вначале вызывает шунтирование крови в обоих направлениях, а затем «справа налево», что приводит к развитию аритмий, легочной артериальной гипертензии, цианоза (то есть порок белого типа переходит в порок синего типа) и сердечной недостаточности. При дефекте межжелудочковой перегородки развитие заболевания протекает в принципе аналогично, однако при больших размерах этого дефекта, даже при сбросе крови только в одном направлении («слева направо»), развивается перегрузка, гипертрофия и недостаточность левого желудочка сердца,который работает в условиях возросшей нагрузки (сброс крови не только в аорту, но и в правый желудочек), а затем и правого желудочка сердца.

        Врожденные пороки сердца синего типа


        image

        Пороки сердца синего типа могут протекать с усилением или с ослаблением легочного кровотока. Из пороков синего типа с повышенным легочным кровотоком рассмотрим такой порок, как полная транспозиция магистральных артерий, заключающийся в отхождении аорты от правого, а легочной артерии - от левого желудочка сердца. В результате этого образуются два отдельных и не зависимых друг от друга круга кровообращения. Жизнь новорожденного возможна только в том случае, если между этими двумя кругами кровообращения есть сообщение: у 65% таких детей имеется открытый артериальный проток, у 35% - дефект межжелудочковой перегородки.

        Транспозиция чаще встречается у детей мужского пола, матери которых страдают сахарным диабетом. Этот порок составляет около 10% всех пороков сердца синего типа и является основной причиной смерти в первые два месяца жизни ребенка.

        Проявлениями транспозиции сосудов являются одышка, цианоз, задержка роста и застойная сердечная недостаточность.

        Наиболее часто встречающимся пороком сердца синего типа, со снижением легочного кровотока, является так называемая тетрада Фалло, которая включает четыре аномалии: дефект межжелудочковой перегородки, затруднение оттоку крови из правого желудочка (гипоплазия легочной артерии), расположение аорты над дефектом межжелудочковой перегородки (декстрапозиция), гипертрофия правого желудочка. Течение заболевания определяется степенью затруднения оттока крови из правого желудочка, то есть степенью гипоплазии легочной артерии.

        Симптомами тетрады Фалло является резкий цианоз, замедление физического развития, одышка при нагрузке, полицетемия (компенсаторная) и деформация пальцев конечностей в виде «барабанных палочек».

        Прогноз врожденных пороков сердца, как правило (за исключением легких степеней боталлова протока и дефекта межпредсердной перегородки), неблагоприятный (учитывая также и то, что больные всеми видами пороков сердца подвержены интеркуррентным инфекциям). Лечение всех врожденных пороков сердца является оперативным. За исключением операции по поводу боталлова протока, все остальные являются связанными с внутрисердечной пластикой и потому проводятся на «сухом» сердце с использованием аппарата искусственного кровообращения. Эффективность операции зависит от степени выраженности порока, возраста больного, его общего состояния.


        Приобретенные (клапанные) пороки сердца


        image

        Приобретенные пороки сердца чаще всего возникают вследствие ревматического процесса, однако их причинами могут быть также сифилис и атеросклероз. Клапанные пороки сердца могут также быть врожденными. Эти пороки называются клапанными, т.к. в основе их лежит нарушение структуры и функции либо атриовентрикулярных клапанов, либо клапанов аорты и легочной артерии. Для каждого из клапанов может быть два типа поражения:

        либо недостаточность, то есть неполное смыкание его створок, либо стеноз, то есть сужение соответствующего клапанного отверстия.

        image

        Рассмотрим принципы нарушения внутрисердечной гемодинамики при каждом типе клапанных поражений.


        Недостаточность левого атриовентрикулярного отверстия (митрального клапана)


        image

        У больных с этой патологией происходит неполное смыкание митрального клапана во время систолы желудочка, и кровь во время систолы частично поступает обратно в левое предсердие. Вначале это приводит к уменьшению объема левого желудочка сердца, так как сопротивление его выбросу снижено. Однако по мере увеличения степени недостаточности происходит прогрессирующее увеличение конечно-диастолического объема левого желудочка. Соответственно этому вначале отмечается усиление сократительной деятельности левого желудочка, затем его сначала тоногенная, а затем миогенная дилатация. Повышается давление в полости левого желудочка, затем - левого предсердия, затем - в венах малого круга кровообращения, что при достаточной степени выраженности и параллельном снижении сократительной способности левого желудочка может привести к развитию отека легких.


        Стеноз левого аортального отверстия

        Стеноз левого атриовентрикулярного отверстия приводит к тому, что для своего полного опорожнения левое предсердие должно развивать повышенную силу. В результате этого происходит перегрузка левого предсердия, его дилатация и застой крови в малом круге кровообращения. Вначале стеноз левого атриовентрикулярного отверстия проявляется одышкой при физической нагрузке, затем к нему присоединяется кровохарканье, а закончиться процесс может отеком легкого.


        Недостаточность аортальных клапанов


        image

        При этом виде порока сердца во время диастолы часть крови, выброшенной левым желудочком, регургитирует, то есть возвращается обратно в полость левого желудочка, так как полулунные аортальные клапаны полностью не смыкаются. В результате этого возрастает конечный диастолический объем левого желудочка, наступает его тоногенная дилатация, развивается достигающая очень больших размеров гипертрофия сердца (описаны случаи, когда вес сердца у таких больных превышал 1000 г). Затем происходит развитие так называемого «комплекса изнашивания гипертрофированного сердца», то есть замещение миофибрилл соединительной тканью, отставание роста массы мышечных волокон от массы капилляров и массы митохондрий, нарушение энергетического обеспечения сократительного акта и развитие

        сердечной недостаточности.

        При травмах, расслоении аорты, инфекционном эндокардите может возникнуть острая недостаточность аортальных клапанов со стремительным нарастанием явлений сосудистого коллапса. В этом случае спасти жизнь больного может только немедленная операция.


        Стеноз аортальных клапанов


        image

        При стенозе аортальных клапанов резко возрастает сопротивление деятельности левого желудочка сердца, который должен преодолевать повышенное сопротивление для того, чтобы выбросить кровь в аорту через суженное отверстие. Следствием этого является перегрузка левого желудочка сердца, развитие сначала его гипертрофии, а затем - сердечной недостаточности.


        Недостаточность правого атриовентрикулярного клапана


        image

        Недостаточность трехстворчатого клапана, которая нередко бывает функциональной, то есть возникающей в результате первичного расширения правого желудочка и кольца соответствующего клапана, приводит в конечном итоге к перегрузке этого отдела сердца, повышению давления в правом предсердии и застою в большом круге кровообращения, развитию общих отеков и других явлений правожелудочковой сердечной недостаточности.


        4вопрос

        Гипер- и гипофункция паращитовидных желез, этиология, патогенез и последствия Гипофункция

        Выпадение функции паращитовидных желез ведет к паратиреопривной тетании (экспериментально).Проявление: вялость, жажда, снижение температуры тела, одышка. Уменьшение концентрации кальция в крови, изменение соотношения одно- (Na+, K+) и двухвалентных ( Ca2+, Mg2+) ионов. Как следствие этого – повышение нервно-мышечной возбудимости. Появляется мышечная ригидность, нарушается походка. При этом – множественные фибриллярные сокращения мышц всего тела, к которым затем присоединяются приступы клонических судорог, которые переходят в тонические, наступает опистотонус. Судорожные сокращения могут переходить и на внутренние органы. В один из приступов экспериментальное животное погибает.

        Одновременно с гипокальциемией в крови увеличивается содержание неорганического фосфора. Нарушение минерального обмена обусловлены нарушением резорбции кости, всасывания кальция в ЖКТ и увеличением резорбции фосфора в почках.

        Гипопаратиреоз у людей

        Причина: случайное повреждение или удаление паращитовидных желез при оперативном вмешательстве на щитовидной железе. Относительная гипофункция отмечается при интенсивном росте у детей, при беременности, лактации и др. состояниях, связанных с повышенной потребностью в кальции.Проявление: повышение нервно-

        мышечной возбудимости (может наблюдаться спазмофилия у детей 1-2 лет – периодические судороги мышц при повышении окружающей температуры и др. неблагоприятных влияниях. Большую опасность при этом представляют ларингоспазм, который может привести к асфиксии и смерти).

        Гиперфункция паращитовидных желез.При повышенной секреции паратирина усиливается активность и образование остеокластов и тормозится их дифференцировка в остеобласты. Повышается всасывание кальция в ЖКТ, уменьшается обратное всасывание фосфотов в почках.

        Причина: аденома или гиперплазия паращитовидных желез. При этом развивается генерализованная фиброзная остеодистрофия.

        Проявление: Боль в мышцах, костях, суставах, размягчение костей, резкая деформация скелета. Минеральные компоненты «вымываются» из костей и откладываются во внутренних органах. Развивается нефрокальциноз, сужение просвета канальцев нефронов и закупорка их камнями (нефролитиаз) и в итоге – почечная недостаточность (ОПН). Вследствие отложения солей кальция в стенках сосудов нарушается гемодинамика и кровоснабжение тканей.

         

         

         

         

         

         

         

        БИЛЕТ 28


        1. Общая характеристика адаптации к гипоксии

        • При действии даже умеренной гипоксии сразу формируется поведенческая реакция, направленная на поиск среды существования, оптимально обеспечивающей уровень биологического окисления. Человек может направленно менять условия жизнедеятельности с целью устранения состояния гипоксии.

      • Возникшая гипоксия служит системообразующим фактором: в организме формируется динамичная функциональная система по достижению и поддержанию оптимального уровня биологического окисления в клетках.

        • Система реализует свои эффекты за счёт активации доставки кислорода и субстратов метаболизма к тканям и включения их в реакции биологического окисления.

        • В структуру системы входят лёгкие, сердце, сосудистая система, кровь, системы биологического окисления и регуляторные системы.

          Условно адаптивные реакции подразделены на две группы экстренной адаптации и долговременной адаптации.

          Причина активации механизмов срочной адаптации организма к гипоксии: недостаточность биологического окисления. Как следствие в тканях снижается содержание АТФ, необходимой для обеспечения оптимальной жизнедеятельности .

      • Ключевой фактор процесса экстренной адаптации организма к гипоксии — активация механизмов транспорта 02 и субстратов обмена веществ к тканям и органам. Эти механизмы предсуществуют в каждом организме. В связи с этим они активируются сразу (экстренно, срочно) при возникновении гипоксии и снижении эффективности биологического окисления.

      • Повышенное функционирование систем транспорта -, кислорода и субстратов метаболизма к клеткам сопровождается интенсивным расходом энергии и субстратов обмена веществ. Таким образом, эти механизмы имеют высокую «энергетическую и субстратную цену».

        Долговременная адаптация к гипоксии реализуется на всех уровнях жизнедеятельности: от организма в целом до клеточного метаболизма.

        • Особенности механизмов долговременной адаптации к гипоксии.

          • Процессы приспособления к повторной и/или длительной гипоксии формируются постепенно в результате многократной и/или продолжительной активации срочной адаптации к гипоксии.

          • Переход от несовершенной и неустойчивой экстренной адаптации к гипоксии к устойчивой и долговременной адаптации имеет существенное биологическое (жизненно важное) значение: это создаёт условия для оптимальной жизнедеятельности организма в новых, часто экстремальных условиях существования.

          • Основой перехода организма к состоянию долговременной адаптированности к гипоксии является активация синтеза нуклеиновых кислот и белков.

          • Синтетические процессы доминируют в органах, обеспечивающих транспорт кислорода и субстратов обмена веществ, а также в тканях, интенсивно функционирующих в условиях гипоксии.

          • В отличие от экстренной адаптации к гипоксии, при которой ведущее значение имеет активация механизмов транспорта 02 и субстратов обмена веществ к тканям, основным звеном долговременного приспособления к гипоксии является существенное повышение эффективности процессов биологического окисления в клетках.

          • Системы, обеспечивающие доставку кислорода и продуктов обмена веществ к тканям (внешнего дыхания и кровообращения), при устойчивой адаптации к гипоксии также приобретают новые качества: повышенные мощность, экономичность и надёжность функционирования.

            Вопрос2 - иммунокомплексные реакции


            акции данного типа, обозначаемые как иммунокомплексные или преципитиновые, вызываются сами «антиген-антитело», циркулирующими в биологических жидкостях, в том числе и в плазме кр ые комплексы активируют различные сывороточные медиаторы аллергии (главным образом, систе ента). Комплексы, образовавшиеся в сыворотке крови, оказывают повреждающий эффект на ткани ости, когда они «осаждаются» в стенке сосудов, или когда они задерживаются в фильтрующих стру к гломерулярный аппарат почек.

            вреждения тканей, опосредованные иммунными комплексами, инициируются двумя типами анти Экзогенными - такими как чужеродные белки при инъекциях сыворотки и плазмы крови; инфекци бактерии, вирусы, паразиты, грибки); некоторые химические вещества (хинидин, героин).

            Эндогенными - продуцирующими антитела против собственных тканей.

            инические проявления патогенного воздействия на организм антигенов, ассоциированных с иммун сами, выражаются в форме гломерулонефритов, инфекционного эндокардита, узелкового периарт ической анемии, ревматоидного артрита, системной красной волчанки, сывороточной болезни (под ривается ниже) и др.

            иническая симптоматика аллергических реакций иммунокомплексного типа зависит в значительно нтрации антител (IgG и IgM), а также от количества образовавшихся и фиксированных в тканях им сов и места их образования. При уже имеющихся в организме антителах экзогенные антигены фик астке инъекции. Развивается местная аллергическая реакция - феномен Артюса-Сахарова (подро ривается ниже), при которой иммунные комплексы образуются и включаются в локальные мелкие сные сосуды кожи. Если антитела к экзогенному или эндогенному аллергену отсутствуют, то после тственно попадает в кровоток и оттуда - в различные органы и ткани. Образующиеся в ответ на эт нную агрессию» антитела, а затем и иммунные комплексы, обуславливают развитие генерализован

            и, например, сывороточной болезни.

            ким образом, расстройства, опосредуемые иммунными комплексами, могут быть общими, если по тся в крови и «откладываются» во многих органах, или местными, локализованными в отдельных

            Вопрос 3-

            B 12 дефицитная и фолиеводефицитная анемия B 12анемия

            Причины, вызывающие развитие анемий указанного вида, могут быть разделены на две группы:---недостаточное поступление витамина В12 в организм с продуктами питания,---нарушение усвоения витамина В12 в организме

            Анемии, возникающие по этой причине, протекают тяжело, трудно поддаются лечению, именно в связи с этим указанные формы мегалобластических дефицитных анемий называют пернициозными или анемиями Аддисона - Бирмера. Витамин

            В12 (цианокобаламин) содержится в животных продуктах - мясе, яйцах, сыре, печени, молоке, почках. В этих тканях он связан с белком. При кулинарной обработке, а также в желудке цианокобаламин освобождается от белка (в последнем случае - под влиянием протеолитических ферментов). В свободном состоянии витамин В12 образует комплекс с синтезирующимся в желудке гликопротеином и в таком виде всасывается в кровь.

            Недостаток витамина В12 в указанных продуктах, голодание или отказ от употребления пищи животного происхождения (вегетарианство) нередко обусловливают развитие витамин В12 - дефицитной анемии. Витамин В12, поступающий в организм с пищей, по предложению Кастла (1930) называют "внешним фактором" развития анемии.

            Париетальные клетки желудка синтезируют термолабильный щелочеустойчивый фактор (его обозначают как "внутренний фактор" Кастла), представляющий собой гликопротеин. Комплекс витамина и гликопротеина связывается со специфическими рецепторами клеток слизистой оболочки средней и нижней части подвздошной кишки и далее поступает в кровь. Незначительное количество витамина В12 (около 1 %) всасывается в желудке без участия внутреннего фактора. Запасы витамина В12 в организме достаточно велики (около 2 - 5 мг). В основном он депонируется в печени. Из организма ежедневно выводится с экскрементами около 2 - 5 мкг. В связи с этим дефицит витамина при значительном снижении его поступления и (или) усвоения развивается лишь через 3 - 6 лет. Недостаток витамина В12 в результате нарушения и (или) снижения его всасывания может быть следствием уменьшения или прекращения синтеза внутреннего фактора Кастла; нарушения всасывания комплекса "витамин В12 + гликопротеин" в подвздошной кишке; повышенного расходования витамина; "конкурентного" использования витамина В12 в кишечнике паразитами или микроорганизмами.

            Патогенез- Недостаток в организме витамина В12 любого происхождения обусловливает нарушение синтеза нуклеиновых кислот в эритрокариоцитах, а также обмена жирных кислот в них и клетках других тканей. Витамин В12 имеет две коферментные формы: метилкобаламин и 5 - дезоксиаденозилкобаламин.

            Метилкобаламин участвует в обеспечении нормального, эритробластического, кроветворения. Тетрагидрофолиевая кислота, образующаяся при участии метилкобаламина, необходима для синтеза 5, 10 - метилтетрагидрофолиевой кислоты (коферментная форма фолиевой кислоты), участвующей в образовании тимидинфосфата. Последний включается в ДНК эритрокариоцитов и других интенсивно делящихся клеток. Недостаток тимидинфосфата, сочетающийся с нарушением включения в ДНК уридина и оротовой кислоты, обусловливает нарушение синтеза и структуры ДНК, что ведет к расстройству процессов деления и созревания эритроцитов

            Фолиеводефицитные анемии

            Фолиевая кислота - комплексное соединение. Она состоит Соединения фолиевой кислоты (фолаты) содержатся в большом количестве в печени, мясе, дрожжах, ш из трех компонентов: глутаминовой кислоты, парааминобензойной кислоты и птеридинового кольца. пинате. Однако при кулинарной обработке более половины ее разрушается. При дефиците поступления запасы ее в организме исчерпываются в течение 3 - 4 месяцев.

            Всасывается фолиевая кислота в основном в верхнем отделе тонкой кишки. Метаболически активной (коферментной) формой фолиевой кислоты является тетрагидрофолиевая кислота. В норме последняя необходима для регуляции образования тимидинмонофосфата, входящего в структуру ДНК, синтеза глутаминовой кислоты, пиримидиновых и пуриновых оснований. Причины развития фолиеводефицитных анемий (так же, как и витамин В12 - дефицитных) условно делятся на две группы:

            • недостаточное поступление фолиевой кислоты в организм с пищей

            • нарушение усвоения фолиевой кислоты в организме и доставки ее клеткам гемопоэтической ткани

          Патогенез

          Недостаточность фолиевой кислоты обусловливает нарушение синтеза и структуры ДНК учитывая, что эта кислота в своей метаболически активной форме - в виде тетрагидрофолиевой кислоты необходима для синтеза тимидинмонофосфата, а также включения в молекулу ДНК уридина и оротовой кислоты. Это сопровождается переходом нормобластического типа кроветворения на мегалобластический.

          При исследовании периферической крови — гиперхромная (макроцитарная) анемия. Снижение содержания гемоглобина и эритроцитов. Других отклонений в гемограмме, как правило, не отмечается. Повышение содержания непрямого билирубина имеется крайне редко.

          Патоморфология костного мозга. Тип гемопоэза — мегалобласт-ное кроветворение.

          Картина костного мозга при ФДА практически идентична таковой при В 12 ДА.

          Наиболее характерной чертой этих анемий является появление в крови и красном костном мозге клеток патологической регенерации — мегалобластов и их безъядерных форм — мегалоцитов.

          Вопрос 4


          image

          Патологическая доминанта — главенствующий очаг стойкого возбуждения в определённом отделе ЦНС, ослабляющий активность соседних нервных центров путём

          «притягивания» к себе импульсов, адресованных соседним центрам. В результате возникают значительные и даже необратимые изменения, ограничиваются приспособительные возможности организма, снижается его резистентность и гомеостаз, а восстановление нарушенных его функций возможно лишь частично, либо невозможно совсем. Патологическая доминанта обычно реализуется на межклеточном уровне. Она обычно приводит к недостаточности сопряжённого торможения, а значит — к развитию нарушений физиологических систем, снижению и даже вьшадению тех или иных функций ЦНС. Патологическая доминанта нарушает интегративную и адаптивную деятельность нервной системы.

          Различают несколько видов патологической доминанты: двигательную (моторную), сенсорную (болевую), пищевую, половую и др.

          - Проявление двигательной патологической доминанты — мышечное дрожание (усиливается при вдохе и увеличении произвольных движений).

          • Проявлением болевой патологической доминанты может служить каузалгия (жгучая

            боль), возникающая при повреждении периферического нерва и приводящая к развитию очага застойного возбуждения в различных отделах ЦНС (проявляется, например, в виде болей в конечности в зоне иннервации повреждённого нерва). Другое проявлением сенсорной патологической доминанты — истериозис нервных центров. Под ним понимают состояние нервного центра, возникающее при сильном или длительном раздражении чувствительного нерва и сопровождающееся торможением соответствующих нейронов рефлекторной дуги и повышением возбудимости других рефлекторных дуг. В результате этого даже незначительное раздражение другого чувствительного нерва даёт реакцию.

            Патологическая детерминанта — определённое образование ЦНС, которое становится гиперактивным в результате возникновения генератор патологически усиленного возбуждения и индуцирует формирование патологической системы, имеет для организма отрицательное биологическое значение.

            Можно утверждать, что ПД — формирующее ключевое звено патологической системы.

            Патологическая детерминанта реализуется на системном уровне, активизируется разнообразными как специфическими (зрительными), так и неспецифическими (вызывающими расстройства вегетативной нервной системы и психики) стимулами. ПД приводит к возникновению нарушений реципрокных взаимоотношений между нейронами центра и нервными центрами, например, ответственными за регуляцию мышц- антагонистов (сгибателей и разгибателей).

            На фоне первичной детерминанты могут возникать вторичные детерминанты в той же патологической системе или в других физиологических системах. Вторичные ПД усиливают имеющиеся или формируют новые патологические системы в ЦНС. ПД — наиболее резистентное звено патологической системы.

            Патологическая детерминанта определяют ведущие патогенетические сдвиги в организме.

             

             

             

             

             

             

             

            Билет 29

          • Вопрос1- эмболия

            Эмболия - это закупорка сосудов эмболами, приносимыми током крови или лимфы. Классификация эмболии:

            • I в зависимости от характера эмболов-экзогенная (воздушная, газовая,

              бактериальная, паразитарная, плотными инородными телами); эндогенная (тромбом, жиром, околоплодными водами, различными тканями).

            • II по локализации-эмболия большого круга кровообращения; эмболия малого круга кровообращения; эмболия системы воротной вены.

              Движение эмболов обычно осуществляется в соответствии с естественным поступательным движением крови. Исключением является ретроградная эмболия, когда движение эмбола подчиняется не гемодинамическим законам, а силе тяжести самого эмбола. Такая эмболия развивается в крупных венозных стволах при замедлении кровотока и уменьшении присасывающего действия грудной клетки.

              Парадоксальная эмболия наблюдается при незаращении межпредсердной или межжелудочковой перегородки, в результате чего эмболы из вен большого круга кровообращения из правой половины сердца переходят в левую, минуя малый круг.

              Эмболия экзогенного происхождения:

              1. воздушная эмболия. Возникает при ранении крупных вен, которые слабо спадаются и давление, в которых близко к нулю или отрицательное. В результате в поврежденные вены засасывается воздух, с последующей эмболией сосудов малого круга

                кровообращения. При ранении легкого или деструктивных процессах в нем наступает эмболия сосудов большого круга кровообращения;

              2. газовая эмболия. Является основным патогенетическим звеном состояние декомпрессии, в частности, кессонной болезни. Перепад атмосферного давления от повышенного к нормальному или от нормального к резко пониженному приводит к понижению растворимости газов в тканях и крови и закупорки пузырьками этих газов капилляров, расположенных в бассейне большого круга кровообращения.Эмболия эндогенного происхождения. Источником тромбоэмболии является частица оторвавшегося тромба при асептическом или гнойном расплавлении его. Если тромбы образуются в левой половине сердца (при эндокардите, аневризме) или в артериях (при атеросклерозе), наступает эмболия сосудов большого круга кровообращения. Воспалительные изменения в клапанах легочного ствола и правом предсердно- желудочковом клапане, являющемся основой тромбоэндокардита, сопровождаются тромбоэмболией легочных артерий.

              Жировая эмболия возникает при попадании в кровоток капель жира при повреждении костного мозга, подкожной или тазовой клетчатки, жирной печени. Поскольку источник эмболии располагается преимущественно в бассейне вен большого круга кровообращения, жировая эмболии возможна, прежде всего, в сосудах малого круга кровообращения.

              Тканевая эмболия развивается при травме тканей, особенно богатых водой. Особое значение имеет эмболия сосудов клетками злокачественных опухолей, поскольку является основным механизмом образования метастазов.

              Эмболия околоплодными водами - попадание околоплодных вод во время родов в поврежденные сосуды матки на участке отделившейся плаценты.

              2вопрос-

              центральный механизм в формирование лихорадки

              В основе этого механизма лежит перестройка функции терморегуляторного центра, который находится в заднем отделе гипоталамуса. Там же находятся тормозные вставочные нейроны, на которые воздействуют лейкопирогены. Под влиянием пирогенов меняется также реактивность холодовых и тепловых рецепторов ЦНС, происходит изменение соотношения процессов теплообразования и теплоотдачи в организме. При этом меняется реактивность тормозных вставочных нейронов, и установочный уровень температуры, который в исходном состоянии находился в пределах нормальных колебаний температуры (около 36,60 С), смещается на новый, более высокий установочный уровень. Таким образом, под влиянием пирогенов формируется новая установочная температурная точка. В развитии лихорадки по центральному механизму большую роль играет ретикулярная формация. Через ретикулярную формацию в ЦНС поступает информация с периферических адренорецепторов. В зависимости от функционального состояния ретикулярной формации (активация или угнетение) наблюдается развитие или торможение лихорадочного процесса. Большую роль в развитии лихорадки играет ЦНС. При возбуждении ЦНС при воздействии стресса развивается эмоциональная лихорадка.

              Гуморальные механизмы

              Это – эффекторное звено развития лихорадки. В патогенезе лихорадки играют роль гормоны, нейромедиаторы, биологические активные вещества, простагландины.Простагландин Е1 (ПГ Е1 ) является посредником между пирогенами и

              тормозными вставочными нейронами. Это приводит к накоплению цАМФ, что формирует новый уровень терморегуляции.

              3вопрос –коагулопатии

              Коагулопатии бывают наследственными и приобретенными.

              Наследственные коагулопатии — это заболевания, обусловленные дефицитом ряда факторов, прежде всего VIII и IX, это наиболее распространённые наследственные коагулопатии (более 95 % случаев). Дефицит факторов VII, X, V, XI составляет до 1,5 %; других факторов (XII, II, I, XIII) встречается крайне редко (в единичных случаях).

              Гемофилия А (дефицит фактора VIII) наследуется рецессивно, сцепленно с Х- хромосомой. Болеют ею лица мужского пола (10 случаев на 100 тыс. мужчин).

              Дефицит ФVIII приводит к резкому увеличению времени образования протромбиназного комплекса, что сопровождается длительным, практически не прекращающимся кровотечением при незначительной травматизации сосудов (прикусывание языка, ушибы и т. д.). Для гемофилии А характерен гематомный тип кровоточивости.

              Клиническая картина заболевания зависит от степени его тяжести, которая определяется мерой сохранения активности фактора VIII. При лёгкой форме заболевания (более 5 % активности) кровотечения возможны лишь при значительных травмах или оперативных вмешательствах. Болезнь протекает субклинически и часто не диагностируется. При тяжёлой или очень тяжёлой форме (2 % и менее 1 %, соответственно) развиваются рецидивирующие кровоизлияния в крупные суставы (гемартрозы), приводящие к анкилозированию; крупные меж- и внутримышечные, забрюшинные гематомы с последующей деструкцией мягких тканей, тяжёлые и частые спонтанные кровотечения, упорные рецидивирующие желудочно-кишечные и почечные кровотечения.

              При лабораторной диагностике выявляются:

              • значительное увеличение АПТВ; ПВ и ТВ — в норме;

              • нормальные показатели сосудисто-тромбоцитарного гемостаза (ВК, количество тромбоцитов в крови и др.);

              • частичное или полное отсутствие активности ФVIII в плазме крови. Гемофилия В (болезнь Кристмаса, дефицит ФIX) наследуется рецессивно,

              сцепленно с Х-хромосомой. Данный дефект приводит к значительному замедлению процесса формирования протробиназного комплекса, что обусловливает развитие кровоточивости гематомного типа.

              Клиническая картина гемофилии В также, как и гемофилии А, характеризуется кровотечениями (гемартрозы, гематомы), но частота их в 5 раз ниже, чем при дефиците ФVIII.

              Лабораторная диагностика свидетельствует, что:

              • АПТВ увеличено, ПВ и ТВ в норме;

              • показатели сосудисто-тромбоцитарного гемостаза в норме;

              • активность ФIХ частично снижена или отсутствует.

              Приобретенные коагулопатии: ДВС-синдром. Этиология, патогенез, клиническое течение, исходы.

              Приобретенная коагулопатия — диссеминированное внутрисосудистое свёртывание крови, синдром дефибринации, ДВС-синдром.

              ДВС-синдром — неспецифический общепатологический процесс, характеризующийся генерализованной активацией системы гемостаза–антигемостаза, при котором происходит рассогласование систем регуляции агрегатного состояния крови.

              Этиологическим фактором заболевания являются:

              • генерализованные инфекции, септические состояния;

              • шок любого происхождения;

              • обширные хирургические вмешательства, в том числе и акушерская патология (разрыв плаценты, эмболия околоплодными водами, криминальный аборт);

              • злокачественные опухоли;

              • обширные повреждения тканей, тканевая эмболия, ожоги;

              • иммунные, аллергические и иммунокомплексные болезни;

              • массивные кровопотери, трансфузии;

              • отравления гемокоагулирующими змеиными ядами, химическими и растительными веществами, внутрисосудистый гемолиз любого происхождения;

              • острые гипоксии, гипотермия, гипертермия с дегидратацией.

              • первичная или вторичная депрессия противосвёртывающей системы (антикоагулянтной — дефицит антитромбина III и фибринолитической — резкое повышение антиплазминовой активности, дефицит плазминогена и его

              активаторов).

              Основными звеньями патогенеза тромботического синдрома являются:повреждение тканей, которое сопровождается поступлением в кровоток огромного количества прокоагулянтов (тканевого тромбопластина) и генерализованной активацией факторов свёртывающей системы крови с преобладанием внешнего механизма свёртывания;системное поражение сосудистого эндотелия, которое может быть обусловлено действием бактерий (менингококки), эндотоксинов, вирусов; оно сопровождается выделением эндотелиальных прокоагулянтных факторов, активацией тромбоцитов и гиперактивацией внутреннего механизма свёртывания крови, нарастающего потребления и, как следствие, — дефицита факторов противосвёртывающей системы (антитромбина III, протеинов С и S и др.);стимуляция тромбоцитов и макрофагов, когда при бактериальных, вирусных инфекциях, при действии иммунных комплексов, эндотоксинов происходит прямая или опосредованная (через активацию макрофагов и выделение цитокинов) активация тромбоцитов, которая сопровождается формированием внутрисосудистых тромбоцитарных микроагрегатов (тромбов); следствием этого являются тромбоцитопения потребления и нарастающая капилляро-трофи-ческая недостаточность.

              Для патогенеза геморрагического синдрома характерны:гиперактивация механизмов коагуляции крови, сопровождающаяся нарастающим потреблением факторов свёртывающей системы и тромбоцитов, что приводит к тотальному дефициту факторов свёртывания (коагулопатия, тромбоцитопения потребления) и к развитию геморрагического синдрома; образование тромбина в сосудистом русле, сопровождающееся значительной активацией фибринолитической системы, которая также играет важную роль в развитии практически не останавливающихся кровотечений.

              В развитии ДВС-синдрома по гемостазиологической характеристике выделяются следующие стадии:

              1. гиперкоагуляция и агрегация тромбоцитов;

              2. переходная;

              3. гипокоагуляция (коагулопатия потребления);

              4. восстановительная.


              4вопрос –

              Генератор патологически усиленного возбуждения в центральной нервной системе

  • это интегрированная совокупность гиперактивированных нейронов, которая генерирует исходящий от данной совокупности избыточно интенсивный и продуцируемый вне зависимости от деятельности интегрирующих систем регуляции неконтролируемый поток импульсов. Формирование и дальнейшее развитие генератора — это типовой патологический процесс, происходящий через действие эндогенных механизмов межнейронального уровня. Необходимое условие формирования и деятельности генератора — это недостаточность тормозных механизмов в популяции его нейронов.

  • Процесс возникновения генератора индуцируется первичным нарушением тормозных механизмов в результате взаимодействия организма с этиологическим фактором, а также усиленным возбуждением нейронов (значительная и устойчивая деполяризация), которое обуславливает вторичную недостаточность тормозных механизмов.

    В патологической констелляции супрасегментарных нейронов, составляющих генератор патологически усиленного возбуждения, межнейрональные взаимодействия обеспечивают его устойчивость, распространение и развитие и осуществляются несинаптическими и синаптическими механизмами. В результате межнейрональных взаимодействий генератор приобретает способность развивать самоподдерживающуюся активность, которая не зависит от специальной стимуляции. Патогенетическое значение генератора патологически усиленного возбуждения состоит в том, что он обуславливает избыточную активацию тех отделов центральной нервной системы, где локализованы популяции нейронов генератора патологически усиленного возбуждения. В результате данные отделы приобретают значение патологических детерминант, вызывающих образование патологических систем.

    Генераторы могут возникать в разных отделах центральной нервной системы, то есть имеют значение универсального патогенетического механизма.

    Специфика деятельности генераторов во многом определяет особенности соответствующих нейропатологических синдромов, имеющих генераторную природу. Действие первичного генератора служит причиной образования генератора вторичного, что способствует резистентности патологических систем. Кроме генераторов патологически усиленного возбуждения источниками патологической стимуляции других отделов могут становиться различные патологически измененные образования периферической или центральной нервной системы

    Билет 30

    Вопрос 1 гипоксия

    Гипоксия (кислородное голодание) - типовой патологический процесс, возникающий в результате недостаточности биологического окисления и обусловленной ею энергетической необеспеченности жизненных процессов.

    В зависимости от причин и механизма развития гипоксии могут быть: экзогенные (при изменениях содержания во вдыхаемом воздухе кислорода и/или

    общего барометрического

    давления, сказывающихся на системе обеспечения кислородом) — подразделяются на гипоксическую

    (гипо - и нормобарическую) и гипероксическую (гипер - и нормобарическую) формы гипоксии;

    по течению — молниеносную (длится несколько десятков секунд), острую (десятки минут), подострую (часы, десятки часов), хроническую (недели, месяцы, годы);

    по распространенности — общую и регионарную;

    по степени тяжести — легкую, умеренную, тяжелую, критическую (смертельную).

    Проявления и исход всех форм гипоксии зависят от природы этиологического фактора, индивидуальной реактивности организма, степени тяжести, скорости развития, от продолжительности процесса.

    ЭТИОЛОГИЯ И ПАТОГЕНЕЗ ГИПОКСИИ ГИПОКСИЧЕСКАЯ ГИПОКСИЯ

    Гипобарическая форма возникает при понижении парциального давления кислорода во вдыхаемом воздухе в условиях разреженной атмосферы. Имеет место при подъеме в горы (горная болезнь) или при полетах на летательных аппаратах (высотная болезнь, болезнь летчиков). Основными факторами, вызывающими при этом патологические сдвиги, являются: 1) понижение парциального давления кислорода во вдыхаемом воздухе (гипоксия); 2) понижение атмосферного давления (декомпрессия или дизбаризм).

    Нормобарическая форма развивается в тех случаях, когда общее барометрическое давление нормальное, но парциальное давление кислорода во вдыхаемом воздухе понижено. Возникает данная форма гипоксии главным образом в производственных условиях (работа в шахтах, неполадки в системе кислородного обеспечения кабины летательного аппарата, на подводных лодках, имеет место также при нахождении в помещениях малого объема в случае большой скученности людей.)

    При гипоксической гипоксии снижаются парциальное давление кислорода во вдыхаемом и альвеолярном воздухе; напряжение и содержание кислорода в артериальной крови; возникает гипокапния, сменяющаяся гиперкапнией.

    ГИПЕРОКСИЧЕСКАЯ ГИПОКСИЯ

    Гипербарическая форма возникает в условиях избытка кислорода («голод среди изобилия»). «Лишний» кислород не потребляется в энергетических и пластических целях; угнетает процессы биологического окисления; подавляет тканевое дыхание; является источником свободных радикалов, стимулирующих перекисное окисление липидов; вызывает накопление токсических продуктов, а также - повреждение легочного эпителия, спадение альвеол, снижение потребления кислорода и в конечном счете - нарушение обмена веществ, возникновение судорог, коматозного состояния (осложнения при гипербарической оксигенации).

    Нормобарическая форма развивается как осложнение при кислородной терапии, если длительно используются высокие концентрации кислорода, особенно у пожилых людей, поскольку у них с возрастом падает активность анти-оксидантной системы.

    При гипероксической гипоксии в результате увеличения парциального давления кислорода во вдыхаемом воздухе возрастает его воздушно-венозный градиент, но

    снижается скорость транспорта кислорода артериальной кровью и потребления кислорода тканями, накапливаются недоокисленные продукты, возникает ацидоз.

    дыхательная (респираторная) гипоксия

    Развивается в результате недостаточности газообмена в легких в связи с альвеолярной гиповентиляцией, нарушением вентиляционно-перфузионных отношений, с затруднением диффузии кислорода (болезни легких, трахеи, бронхов, нарушение функции дыхательного центра; пневмо -, гидро-, гемоторакс, воспаление, эмфизема, саркоидоз, асбестоз легких; механические препятствия для поступления воздуха; локальное запустевание сосудов легких, врожденные пороки сердца). При респираторной гипоксии в результате нарушения газообмена в легких снижается напряжение кислорода в артериальной крови, возникает артериальная гипоксемия, в большинстве случаев сочетающаяся с гиперкапнией.

    ЦИРКУЛЯТОРНАЯ (СЕРДЕЧНО-СОСУДИСТАЯ) ГИПОКСИЯ

    Возникает при нарушениях кровообращения, приводящих к недостаточному кровоснабжению органов и тканей. Важнейшим показателем и патогенетической основой ее развития является уменьшение минутного объема крови

    из-за расстройства сердечной деятельности (инфаркт, кардиосклероз, перегрузка сердца, нарушения электролитного баланса, нейрогуморальной регуляции функции сердца, тампонада сердца, облитерация полости перикарда); гипово-лемии (массивная кровопотеря, уменьшение притока венозной крови к сердцу и др.). При циркуляторной гипоксии падает скорость транспорта кислорода артериальной и капиллярной кровью при нормальном или сниженном содержании его в артериальной крови и низком - в венозной, т.е. имеет место высокая артериовенозная разница по кислороду.

    КРОВЯНАЯ (ГЕМИЧЕСКАЯ) ГИПОКСИЯ /

    Развивается при уменьшении кислородной емкости крови. Причинами ее могут быть анемия и гидремия; нарушение способности гемоглобина связывать, транспортировать и отдавать тканям кислород при качественных изменениях гемоглобина (образование карбоксигемоглобина, метгемоглобинообразование, генетически обусловленные аномалии гемоглобина). При гемической гипоксии снижается содержание кислорода в артериальной и венозной крови; уменьшается артериовенозная разница по кислороду.тканевая гипоксия

    Различают первичную и вторичную тканевую гипоксию.

    К первичной тканевой (иеллюлярной) гипоксии относят состояния, при которых имеет место первичное поражение аппарата клеточного дыхания. Основными патогенетическими факторами первично-тканевой гипоксии являются:

    покрывает потребностей тканей; в результате возникает относительная недостаточность биологического окисления и ткани оказываются в состоянии гипоксии. При тканевой гипоксии парциальное напряжение и содержание кислорода в артериальной крови могут до известного предела оставаться нормальными, а в венозной крови значительно повышаются; уменьшается артериовенозная разница по кислороду.Вторичная тканевая гипоксия может развиться при всех других видах гипоксии.

    субстратная гипоксия-Развивается в тех случаях, когда при адекватной доставке кислорода к органам и тканям, нормальном состоянии мембран и ферментных систем возникает первичный дефицит субстратов, приводящий к нарушению всех звеньев биологического окисления. В большинстве случаев такая гипоксия обусловливается дефицитом в клетках глюкозы (например, при расстройствах углеводного обмена - сахарный диабет и др.) или других субстратов (жирных кислот в миокарде), а также тяжелым голоданием.

    перегрузочная гипоксия («гипоксия нагрузки»)-Возникает при напряженной деятельности органа или ткани, когда функциональных резервов систем транспорта и утилизации кислорода при отсутствии в них патологических изменений оказывается недостаточно для удовлетворения резко возросшей потребности в кислороде (чрезмерная мышечная работа, перегрузка сердца). При перегрузочной гипоксии формируется

    «кислородный долг» наряду с увеличением скорости доставки и потребления кислорода, а также образования и выведения углекислоты.

    смешанная гипоксия-Гипоксия любого типа, достигнув определенной степени, неизбежно вызывает нарушения функции различных органов и систем, участвующих в обеспечении доставки к ним кислорода и его утилизации. Сочетание различных типов гипоксии возможно, в частности, при шоке, отравлении боевыми отравляющими веществами, заболеваниях сердца, при коматозных состояниях и др.

    Вопрос2 – цитотоксические имунные реакции

    При реакциях гиперчувствительности типа II AT (обычно IgG или IgM) связываются с Аг на поверхности клеток. Это приводит к фагоцитозу, активации клеток-киллеров или опосредованному системой комплемента лизису клеток. Клинические примеры включают поражения крови (иммунные цитопении), поражения лёгких и почек при синдроме Гудпасчера, острое отторжение трансплантата, гемолитическую болезнь новорождённых.

    Прототипом аллергии типа II является цитотоксические (цитолитические) реакции иммунной системы, направленные на уничтожение отдельных чужеродных клеток — микробных, грибковых, опухолевых, вирусинфицированных, трансплантированных.

    Однако, в отличие от них, при аллергических реакциях типа II, во-первых, повреждаются собственные клетки организма; во-вторых, в связи с образованием избытка цитотропных медиаторов аллергии это повреждение клеток нередко приобретает генерализованный характер.

    Причины аллергических реакций второго типа

    Причиной аллергических реакций типа II наиболее часто являются химические вещества со сравнительно небольшой молекулярной массой (в том числе ЛС, содержащие золото, цинк, никель, медь, а также сульфаниламиды, антибиотики и гипотензивные средства) и гидролитические ферменты, в избытке накапливающиеся в межклеточной жидкости (например, ферменты лизосом клеток или микроорганизмов при их массированном разрушении), а также активные формы кислорода, свободные радикалы, перекиси органических и неорганических веществ.

    Указанные (и вполне вероятно другие) агенты обусловливают единый общий результат — они изменяют антигенный профильотдельных клеток и неклеточных структур. В результате образуются две категории аллергенов.