Главная      Учебники - Производство     Лекции по производству - часть 4

 

поиск по сайту            

 

 

 

 

 

 

 

 

 

содержание   ..  227  228  229   ..

 

 

Функциональная схема автоматизированного контроля обработки железобетонных изделий в камерах периодического действия

Функциональная схема автоматизированного контроля обработки железобетонных изделий в камерах периодического действия

Расчетно-пояснительная записка к курсовой работе

1.Задание на графическую часть работы: составить функциональная схема автоматизированного контроля процесса тепловой обработки железобетонного изделия в камерах периодического действия.

Наименование исходных данных Вариант № 21
Измеряемая среда Вода
Максимальный расход Qном.max, кг/ч 2500
Средний расход Qном.ср. , кг/ч 2000
Избыточное давление Ри , кПа 245,1
Температура t, °С 55
Барометрическое давление Рб , кПа 78,45
Допустимая потеря давления на сужающем устройстве при максимальном расходе Р'пд , кПа 24,51
Диаметр трубопровода, Д мм 75
Материал трубопровода Сталь 20
Тип термопары по ГОСТ 3044-44 Обозначение градуировки * Номер варианта
от (tmin ) до (tmax )
ТХА ХА 20 400 900

В приборе применено записывающее устройство в виде каплеструйного картриджа, закрепленного на подвижной каретке. Напряжение на картридж подается от схемы управления с помощью гибкой ПП. При подаче напряжения на резистор, встроенный в картридж, чернила, подаваемые через капилляр, вскипают и выбрасываются на диаграммную бумагу, оставляя на ней след в виде точки. Каретка соединена с шаговым двигателем следящей системы гибким тросиком. Применение бесконтактной записи позволило уменьшить трение в следящей системе.

Особенности построения схемы АЦП в приборах серии «Технограф». При разработке прибора учитывались следующие условия его работы:

– наличие помех промышленной частоты;

– малые уровни сигналов от датчиков;

– заданное (или максимальное) число контролируемых каналов.

Входное постоянное (медленноменяющееся) напряжение преобразуется в цифровой код при помощи АЦП, обеспечивающего хорошее подавление помех с частотой питающей сети и опрос каналов в течение заданного времени. Обычно постоянная времени тепловых процессов объектов контроля составляет примерно 10...900 с и число каналов локальных систем не превышает 64, в связи с чем целесообразно использовать АЦП двойного интегрирования с0 длительностью первого такта, кратной периоду частоты сети, для полного подавления помехи с частотой сети.

Рассмотрим подробнее работу такого АЦП (рис. 3.43).

Рис. 4. Схема АЦП, построенного по принципу двойного интегрирования

В первом такте интегрируется входное напряжение U ВХ :

Тип термо-метра сопро-

Сопротивление

Обозначения градуировки Номер варианта Пределы измерения, 0С
От (tmin ) До (tmax )
ТСМ 53 Гр.23 20 0 50

U 1 (t ) =

где n 1 – число тактовых импульсов генератора за период частоты сети; Ттакт – период тактового генератора; T сети – период напряжения сети.

Во втором такте интегрируется опорное напряжение UОП

где t 2 = n 2 ·Tтакт ; n 2 – число тактовых импульсов за время разряда конденсатора.

Когда напряжение U 1 (t ) станет равным 0, компаратор выдаст команду на останов счетчика второго такта.

Таким образом,


U ВХ = U оп .

Из последней формулы видно, что для максимального подавления помех необходимо использовать конденсатор с малой абсорбцией, стабильный генератор тактовых импульсов в пределах времени первого и второго тактов и стабильное Uo п . Обычно на каждом канале проводится не менее трех измерений для уменьшения вероятности ошибки преобразования. Входные сигналы через плату коммутатора поочередно поступают на вход нормирующего усилителя. С выхода последнего через электронный ключ входной сигнал подается на вход интегрирующего усилителя, который интегрирует входной сигнал за строго заданный промежуток времени. После этого электронный ключ отключает выходной сигнал датчика, а ко входу интегратора подсоединяется источник напряжения с полярностью, противоположной полярности выходного сигнала датчика.

На плате ЦП формируется сигнал управления выходными реле сигнализации при выходе параметра за заданное значение.

Основные технические характеристики регистрирующих приборов «Технограф-100 и -160»

Основная погрешность прибора, % от диапазона измерений:

по показаниям...........…...………±0,25 (для узкопредельных ±0,5)

по цифровой регистрации........... ±0,25 (для узкопредельных±0,5)

по аналоговой регистрации......... ±0,5 (для узкопредельных ±1,0)

по сигнализации ...............……....±0,5 (для узкопредельных ±1,0)

Напряжение питания силовой цепи, В ...................…….………

Частота напряжения питания, Гц..............................………………50 ± 1

Коэффициент высших гармоник, % .....................................…………≤ 5

Диапазон задания уставок сигнализации,

% от диапазона измерения входного сигнала ...............................0...100

Входное сопротивление прибора для входных сигналов:

0...10;0...20;0...50;0...100 мВ,0...5 В

по ГОСТ 26.011, от датчиков с номинальной

технической характеристикой К, L, S, В

по ГОСТ Р50431, кОм ............................................………………… ≥ 500

0...5; 0...20; 4...20 мА, Ом .............................................…………………50

Исполнение:

по защищенности от воздействия окружающей среды……...…… по ГОСТ 12997 – 84

по устойчивости к воздействию температуры и влажности

окружающего воздуха ....….….... группа В4 по ГОСТ 12997 – 84

по устойчивости к воздействию атмосферного давления группа Р2 по ГОСТ 12997 – 84

по виброустойчивости ...........….… группа L3 по ГОСТ 12997–84

Регистрация показаний в прямоугольных координатах на ленте ЛПГ-160 ……………………………………………………..по ГОСТ 7826 – 73

номинальная ширина поля регистрации, мм ................................100

толщина линии регистрации, мм .......................………………..≤ 0,5

Скорость перемещения диаграммной ленты:

при аналоговой регистрации, мм/ч .....………………….…любое из значений ряда 5; 10; 20; 40; 60; 120; 240; 480; 1200; 2400

при цифровой регистрации (устанавливается автоматически), мм на один цикл регистрации ..…………………………………………5

Цикл:

измерения по 12-ти каналам, с ...........................…..……………≤ 12

регистрации (устанавливается с помощью клавиатуры), с ....любое значение из ряда 10; 15; 20; 30; 60; 120; 300; 600

Расход диаграммной ленты, м/ч ..............….……………рассчитывается по формуле L = (3600 / N )225, где N – цикл регистрации

Погрешность скорости движения диаграммной ленты, % ..............≤0,5

Масса, кг ...........................................................................……………… 8

Полный средний срок службы, лет .............………..………………. ≥10

Таким образом, приборы нового поколения существенно превосходят предыдущие разработки по следующим параметрам.

1. Уменьшено число модификаций приборов в 100 раз (с 200 до 2). Это связано с универсальностью приборов, а именно с возможностью работы с различными типами датчиков.

2. Имеется возможность работы в сети благодаря включению в структуру приборов стандартных интерфейсов RS-232 и -485.

3. Обеспечивается подключение разных типов датчиков к любому из каналов.

4. Повышена надежность приборов в результате применения бесконтактной струйной записи.

5. Снижена потребляемая мощность и уменьшены габаритные размеры приборов вследствие использования МП и другой современной элементной базы.

Микропроцессорные показывающие и регистрирующие приборы «Технограф-100» и «Технограф-160» выпускаются Челябинским заводом «Теплоприбор».


4. Описание функциональной схемы АСК

Создан ряд систем (с КЭП, с ПРТЭ), базирующихся на описанном принципе управления процессом.

Система состоит из следующих основных узлов: электронного программного регулятора температуры ЭРП-61; датчиков температуры, установленных в баке сбора конденсата; электронного самописца ЭРП-61; датчиков температуры, установленных в баке сбора конденсата; электронного самописца ЭМП-209; датчика температуры в паровом отсеке кассеты; дроссельной диафрагмы; регулятора давления; электроконтактного манометра; прибора расхода; исполнительного механизма и регулирующего клапана, а также устройств управления и сигнализации.

Необходимость установки самопишущего интегрирующего прибора расхода определяется тем, что расход пара в кассетной установке на цикл тепловой обработки изделий является одним из основных показателей, характеризующих эффективность работы любой из рассмотренных систем автоматики. Для определения суммарного расхода пара за цикл тепловой обработки проводится суммирование единичных расходов и времениподачи пара для каждого замера. В системе осуществляется блокировка на случай падения давления в сети пароснабжения, для чего ставится электроконтактный манометр ЭКМ-1. Для определения расхода регулирующего клапана ставится прибор давления (показывающий давление до и после клапана).

Регулирование по температуре конденсата осуществляется регулятором ЭРП-61, воздействующим через исполнительный механизм на регулирующий клапан. Датчик регулятора установлен в баке сбора конденсата, там же установлен один из датчиков самописца и ртутный термометр для контроля показаний этих датчиков.

Основными элементами системы управления тепловым режимом пропарочных камер по схеме Уралметаллургавтоматики является: программный регулятор ЭРП-61, малоинерционный термодатчик ТДР-61 и паровой регулирующий клапан ПРК-61.

Как известно, технологический процесс тепловлажностной обработки состоит из цикла подъема температуры, изотермической выдержки и охлаждения.

Обязательным элементом цикла является вентиляция ямных камер перед снятием крышки для дальнейших операций по выгрузке изделий, прошедших пропарку. Управление процессом вентиляции в проектных разработках последних лет включается в общую схему автоматизации пропарочной камеры.

На рис. 1, а, б приведены функциональная и структурная схемы автоматизации камеры периодического действия для тепловой обработки железобетонных изделий. По новому ГОСТу используем приборы:

Поступивший к блоку (поз. 12) импульс от программного задатчика (поз. 11) сравнивается с уровнем сигнала, поступающим в этот блок от ручного задатчика. Величина сигнала устанавливается однажды — в процессе наладки системы, и во время работы системы не изменяется. Регулирование будет происходить в зависимости от соотношения сигналов «номинала» и «параметра» — сигнала, отрабатываемого датчиком температуры, установленным в камере. При достижении t = t оп сигнал программного задатчика скачком уменьшается до значения меньшего сигнала, задаваемого ручным задатчиком. Так же когда значение «номинала» становится ниже «параметра» (в камере температура паровоздушной среды не изменяется), то посылается импульс на закрытие исполнительного механизма для прекращения подачи пара в него (если он был открыт). В свою очередь, сигнал от ручного задатчика, который вслед за этим моментом начинает превышать уровень «номинала», еще более страхует систему, исключая случайность включения исполнительного механизма подачи пара в камеру. С этого момента наступает режим проветривания. Отработанный в блоке сравнения: сигнал, направляется к блоку включения затворов камеры. Последним посылается пневматический импульс на открытие исполнительного механизма. Последний открывается, и к эжекторам затворов (не показанным на схеме) поступает пар. С подачей пара к эжекторам происходит открытие приточного и вентиляционного затворов камеры.

В ряде отраслей пневмоавтоматика является основным средством автоматизации. Это связано с высокой степенью надежности пневматической аппаратуры, с простотой ее обслуживания, сравнительной дешевизной. Важное значение имеет также и то, что пневматическая аппаратура пожаро- и взрывобезопасна. Свойственное пневматике низкое быстродействие ограничивает область ее целесообразного применения. Однако при управлении очень инерционными объектами это несущественно.

Пневмоавтоматика камер пропаривания строится на базе системы элементов УСЭППА, состоящей из набора унифицированных элементов, каждый из которых выполняет простейшую операцию.

Ранее говорилось, что в технологическом цикле пропаривания значительное место занимает процесс вентиляции камер. По окончании цикла пропарки необходимо форсировать разгрузку камеры, задержка разгрузки снижает ее пропускную способность, а следовательно — предприятия в целом. Наиболее удачные схемы автоматизации процесса вентиляции были получены на базе применения пневмоавтоматики.


5. Расчётная часть курсового проекта

5.1 Расчет сужающего устройства

Расчет производится в соответствии с “Правилами измерения расхода газов и жидкостей стандартными сужающими устройствами РД–50–231–80”.

Измеряемая среда Воздух
Максимальный расход Qном.max, м3 2500
кг/ч
Средний расход Qном.ср. , м3 2000
кг/ч
Избыточное давление Ри , кПа 245,1
кгс/см2 2,5
Температура t, °С 55
Барометрическое давление Рб , кПа 78,45
кг/см2 0,80
Допустимая потеря давления на снижающем устройстве при максимальном расходе Р'пд , кПа 24,51
кгс/см2 0,25
Диаметр трубопровода Д, мм 75
Материал трубопровода Ст. 20

5.1.1 При выборе типа и разновидности дифманометра предельный номинальный перепад давления дифманометра следует выбирать из стандартного ряда чисел, указанных в ГОСТе 18140-84

5.1.2 Верхний предел измерений дифманометра (ГОСТ 18140-84):

5.1.3 Для определения предельного номинального перепада давления вначале рассчитывают допустимую потерю давления P ПД при расходе Q пр :

- допустимая потеря давления на сужающем устройстве при максимальном расходе;

Q пр - верхний предел измерения дифманометра;

Qmax - наибольший измеряемый расход

5.1.4 Далее определяем дополнительную величину С :

- верхний предел измерения дифманометра для объемного расхода;

ρ - плотность среды в рабочих условиях;

D - внутренний диаметр трубопровода перед сужающим устройством при температуре t.

5.1.5 По вычисленному значению С и заданной величине находим искомое значение и приближенное значение относительной площади сужающего устройства m :

По номограмме для определения предельного номинального перепада давления дифманометра и модуля диафрагмы определяем:

5.1.6 Определим число Рейнольдса и проверим условие: Re > Re min

По таблице «Правил измерения расхода газов и жидкостей стандартными сужающими устройствами РД-50-231-80» определим граничное значение числа Рейнольдса:

Вычислим расчетное значение числа Рейнольдса:

μ – динамическая вязкость воздух

Условие Re > Remin выполняется, значит, дальнейший расчет производить можно.

5.1.7 Вычисляем вспомогательную величину

- наибольший перепад давления в сужающем устройстве, соответствующийQmax .

Для значения находим посредством деления величины на соответствующее значение коэффициента расхода .

5.1.8 Определим потери давления на диафрагме:


5.1.9 Поправочный коэффициент на тепловое расширение материала сужающего устройства:

5.1.10 Подсчитываем искомое значение диаметра отверстия сужающего устройства

5.1.11 Рассчитаем допуск при :

5.1.12. Диаметр отверстия сужающего устройства:

5.2 Методика расчёта измерительной схемы электронного автоматического потенциометра

В соответствии с изложенной методикой и исходными данными для своего варианта №21 (табл. 2) произведу расчёт измерительной схемы потенциометра.

Таблица 2 Пределы измерения и градуировки автоматических потенциометров.

Тип термопары по ГОСТ 3044-44 Обозначение градуировки (при температуре свободных концов термопары ) Номер варианта Предел измерения,
от до
ТХA ХA

21

400

900

Расчёт измерительной схемы потенциометра начинается с выбора значений токов в ветвях схемы, который производится с учетом следующих требований:

1) значения токов должны обеспечивать требуемое падения напряжения на измерительном реохорде и сопротивлениях измерительной схемы;

2) ток, потребляемый измерительной схемой, должен быть незначительным;

3) сопротивления, при прохождении по ним тока, не должны заметно нагреваться и менять вследствие этого своё значение.

С учётом этих требований ток в измерительной цепи автоматически потенциометров, например КСП – 4 (рис. 2), являющейся типовой для измерения ЭДС или напряжений, выбран 5мА: в верхней измерительной ветви и в нижней вспомогательной ветви .

5.2.1 По заданным пределам изменения температуры контролируемой среды

и выбирается наиболее подходящий тип термопреобразователя (термопары) (табл. 2) и по её градировочным таблицам определяются значения и , соответствующие верхнему и нижнему значениям предела измерения.


=4000 C , =9000 C .

=14,5 мВ, =8,42 мВ.

Предел измерения определяется как разность

Рис. 2 Измерительная схема автоматического потенциометра КСП 4.

5.2.2 Величина сопротивления резистора определяется из условия равенства падения напряжения на нём от тока и нормального элемента

Следовательно,

Величины сопротивления резисторов , ограничивающего ток в цепи источника питания стабилизированного (ИПС) и переменного , предназначена для установки величины рабочего тока в измерительной схеме, соответственно равны 750 Ом и 56 Ом.

=750 Ом, =56 Ом.

5.2.3 Величина сопротивления резистора ,

определяющего верхний предел измерения или конец шкалы, определяется из условия равенства падения напряжения на приведенном сопротивлении цепи реохорда (резисторы , , ) и предела измерения ,

Эквивалентное (приведенное) сопротивление реохорда в автоматических приборах является заданной величиной (90, 100 или 300 Ом) и определяется уравнением

90 Ом

Тогда приведенное сопротивление R ПР можно выразить в следующем виде:

,

где: - коэффициент, учитывающий нерабочие участки реохорда; - сопротивления нерабочих участков в линейном реохорде.

K=1.064Получим:

С учётом сопротивления подводящих проводов схемы и имеем:

.

5.2.4 Сопротивление R Н , определяющее нижний предел измерения или начало шкалы находится, исходя из следующих соображений. При температуре контролируемой среды tmin движок реохорда находится в точке а, т.е. в начале шкалы прибора, и термопары компенсируется падением напряжения в точках а – с измерительной схемы

Тогда .

Для высокоточных потенциометров, например класса точности 0,25, учитываются сопротивления соединительных проводов , , и между катушками сопротивлений электрической измерительной схемы, а также термопары при средней температуре свободных концов термопары. Тогда вычисляется по формуле:

5.2.5 Сопротивление служит для ограничения тока в измерительной схеме. Поэтому падения напряжения в точках в – с должно обеспечить компенсацию термопары , соответствующую верхнему пределу измерения прибора . Исходя из этого условия, для прибора с линейным реохордом определяется по уравнению

5.2.6 Для автоматической компенсации влияния изменения температуры свободных концов термопары в схему введено сопротивление RM , выполненное из медной проволоки и располагающееся вблизи свободных концов термопары. С изменением температуры свободных концов термопары появляется изменение падения напряжения на RM при протекании тока I 2 , компенсирующее ту часть ЭДС термопары, которая возникает за счёт изменения температуры свободных концов термопары. Сопротивление RM определяется из выражения:


где: - средняя чувствительность термоэлектрического преобразователя в интервале изменения температуры свободных концов его (определяется по градировочным таблицам), мВ/град; - сопротивления при температуре - температурный коэффициент сопротивления меди, равный .

C=0.006

Сопротивление медной катушки для средней температуры окружающей среды находится по формуле:

5.3 Методика расчёта измерительной схемы электронного автоматического моста

В соответствии с изложенной методикой и исходными данными для своего варианта №21 (табл. 3), произведем расчёт измерительной схемы автоматического моста.


Таблица 3

Пределы измерений и градуировки автоматических уравновешенных мостов.

Тип термометра сопротивления.

Сопротивление

термометра при .

Обозначения градуировки Номер варианта Пределы измерения, 0 С
от до
ТСM 53 Гр.23

21

0

50

Рассмотрим расчёт уравновешенной измерительной трехпроводной схемы автоматического моста КСМ 4 (рис.6.2).

5.3.1 По заданным пределам изменения температуры контролируемой среды и выбирается наиболее подходящий тип термометра сопротивления (табл. 3) и по его градировочным таблицам определяется величины сопротивлений термометра и , соответствующие верхнему и нижнему пределам измерения автоматического моста:

,

,

где: t0 – начальная температура, обычно принимается , - температурный коэффициент сопротивления материала термометра.


Рис. 3 Измерительная трехпроводная схема автоматического уравновешенного моста КСМ 4.

5.3.2 Сопротивление соединительных проводов и подгоночных катушек R л составляют сопротивление внешней цепи Rвн , равное обычно 5 Ом, т.е. сопротивление одной линии – 2,5 Ом.

5.3.3 Сопротивление R д определяет начало шкалы прибора , а rд – подгоночное сопротивление в виде спирали, являющейся частью сопротивления Rд . Последнее выбирается равным Ом.

5.3.4 Величина сопротивления R З должна быть больше Rt и при изменении его от до ток , протекающий через реохорд в указанном диапазоне температуры, должен меняться не более, чем на , иначе уменьшается чувствительность моста

,

Примем

=0,9

Тогда , Ом.

По условию R2 =R3

5.3.5 Сопротивления R 1 находится из уравнения равновесия мостовой схемы относительно начальной отметки шкалы, когда движок реохорда находится в точке в:

R1 = (-(3865-1105,5+2.5-5)

5.3.6 Приведённое сопротивление R пр цепи реохорда ( R р , R ш , R п ) определяется по формуле , полученной путём совместного решения уравнений равновесия мостовой измерительной схемы для двух крайних отметок шкалы:

где: λ – коэффициент равный 1,064.


5.3.7 Величина сопротивления R п , определяющего верхний предел измерения прибора, вычисляется по формуле:

где: R экв – эквивалентное сопротивления реохорда, равное 90 Ом.

5.3.8 Балластное сопротивления R б в цепи питания служит для ограничения тока в плечах измерительной схемы и рассчитывается из условия, чтобы максимальный ток Imax , проходящий через термометр, не превышал 7 мА.

, Ом.

где: U =6,3В – напряжение питания мостовой схемы; Rto – сопротивление термометра при или минимуме.


Заключение

В ходе курсовой работы было произведено построение функциональной схемы автоматизированного контроля процесса тепловой обработки железобетонного изделия в камерах периодического давления.Кроме того, были произведены расчеты измерительных схем автоматических электронных потенциометра, моста и сужающего устройства расходомера по переменному перепаду давления.


Библиографический список

1. Абдулин С.Ф. Технические измерения и приборы: методические указания по выполнению курсовой работы для студентов специальности 210200 – Омск: Изд-во СибАДИ, 2005 – 52 с.

2. Зеличенок Г.Г. Автоматизация технологических процессов и учета на предприятиях строительной индустрии: учеб. пособие для вузов. – М.: «Высш. школа», 1975. – 352 с.

3. ГОСТ 21.404–85. Автоматизация технологических процессов. Обозначения условные приборов и средств автоматизации в схемах. – М.: Издательство стандартов, 1985. – 16 с.

4. Виглеб Г. Датчики: устройство и применение. – М.: «Высшая школа» 1989. – 210 с.

 

 

 

 

 

 

 

содержание   ..  227  228  229   ..