Главная      Учебники - Производство     Лекции по производству - часть 3

 

поиск по сайту            

 

 

 

 

 

 

 

 

 

содержание   ..  337  338  339   ..

 

 

Электроснабжение и электроборудование буровой установки

Электроснабжение и электроборудование буровой установки

ВВЕДЕНИЕ

Нефтегазовая промышленность, а особенно электробурение, являются весьма энергоемкими отраслями, причем основной объем электроэнергии потребляют привод буровых насосов и лебедок. Значительный рост стоимости электроэнергии, получаемой от источников централизованного электроснабжения, и стоимости линий электропередачи, а также наметившиеся тенденции перехода к автономному энергоснабжению с источниками ограниченной установленной мощности выводят на первый план задачи энергосбережения.

При бурении в нефтяной и газовой промышленности эти задачи успешно решаются применением регулируемого электропривода.

В ближайшие годы основной объем внедрения регулируемых электро­приводов на предприятиях нефте- и газодобычи нашей страны будет связан с их реконструкцией. При этом наряду с заменой изношенного или морально устаревшего оборудования возможна и модернизация электроприводов путем доукомплектования существующих электрических машин и систем управле­ния тиристорными преобразователями и другими компонентами регулируемо­го электропривода. При этом ожидаемая экономия электроэнергии за счет внедрения регулируемого электропривода может составить до 40%  от ожи­даемой экономии по всей совокупности мероприятий.

Практическая безальтернативность регулируемого электропривода для тяжелых и экстремальных условий эксплуатации обусловливает особую важность создания таких электроприводов для технических средств освоения континентального шельфа.

Основные направления развития электропривода технологических установок нефтяной и газовой промышленности совпадают с общей тенденцией развития электропривода на современном этапе - все более широким применением регулируемого электропривода и компьютерных средств автоматизации при создании нового и мо дернизации действующего технологического оборудования. Следует также отметить специфическое дня нефтяной и газовой промышленности направление дальнейшего совершенствования электропривода – повышение надежности и взрывозащищенности.


1 ОБЩАЯ ЧАСТЬ

1.1  Описание технологического процесса

Процесс сооружения скважин вращательным способом состоит из повторяющих операций: спуска бурильных труб с долотом (инструмента) в скважину; разрушения породы на забое – собственно бурения; наращивания колонны труб по мере углубления скважины; подъема труб для замены изношенного долота. Для выполнения этих операций, а также работ по креплению ствола скважины используют буровые установки, представляющие собой сложный комплекс производственных механизмов. В состав этого комплекса входят буровая лебедка для подъема, спуска и подачи инструмента, буровые насосы, ротор, механизмы для приготовления и очистки бурового раствора, погрузочно-разгрузочных работ, обеспечением установки сжатым воздухом и пр. Основные (ротор, буровая лебедка и буровые насосы) и вспомогательные механизмы буровой установки приводится в действие от силового привода, тип которого выбирают в зависимости от условия бурения, конструкции механизмов и других факторов.

На данной буровой установки используется привод на постоянном токе. Это объясняется значительно более высокой надежностью и долговечностью электропривода по сравнению с дизельным, а также значительно лучшими характеристиками электропривода (более высоким к.п.д. и перегрузочной способностью, удобством монтажа и демонтажа, простой кинематических схем, меньшей стоимостью эксплуатации, отсутствием необходимости доставки топлива на буровую).

На основании вышки установлен ротор, предназначенный для вращения бурильного инструмента, поддержания и вращения колонны бурильных и обсадочных труб при свинчивании и развинчивании. Для подъема и спуска бурильного инструмента и обсадных труб и передачи вращения ротору, используют буровую лебедку с приводными двигателями. Ее можно применять также при различных вспомогательных операциях особенно в случаи отсутствии специальной вспомогательной лебедки. Привод ротора можно осуществлять через карданный вала или цепную передачу от приводного вала лебедка. Возможен также индивидуальной привод ротора.

Буровые установки комплектуют автоматическим регулятором подачи долота, исполнительный двигатель которого кинематически связан с валом буровой лебедки. При эксплуатации бывают случаи, когда вследствие отсутствия электроэнергии, поломки приводных двигателей и других причин, для предотвращения прихвата инструмент поднимают аварийным приводом, функции которого исполнительный двигатель. Он получает питание от двигателя генератора, получающего в сваю очередь питание от другой электростанции.

В привышечных  сооружениях установлены два буровых насоса с приводными двигателями, обеспечивающие подачу бурового раствора в скважину. Для снабжения установки сжатым воздухом служат компрессоры с приводными двигателями. Для торможения подъемного вала буровой лебедки в процессе спуска инструмента используется вспомогательный тормоз. Вспомогательные механизмы буровой установки – вибросито, кран-балка, водяной насос и др. оснащают индивидуальным электроприводом. Для перемещения и расстановки свечей имеется автомат спуска-подъема с электроприводами перемещения тележки и стрелы.

Аппаратура управления двигателями лебедки и буровых насосов смонтирована в станциях управления, которое управляется с пульта бурильщика.

1.2  Краткая характеристика объекта и применяемого       электрооборудования

Буровая установка БУ-2500ЭУ предназначена для бурения эксплуатационных и разведочных скважин глубиной 2500 м при Весе 1 м бурильной трубы 300 Н

Установка состоит из вышечного, насосного, компрессорного блоков и циркуляционной системы. Основание вышечного блока предназначено для установки на нем вышки, буровой лебедки, Ротора, коробки передач, электропривода лебедки и ротора, вспомогательной лебедки, ключа АКБ-ЗМ2, приспособления для крепления и перепуска неподвижного конца талевого каната. Масса блока 120 т.

Насосный блок включает в себя два насоса с электродвигателями МПЭ-500-500 3УХЛ3-М для привода насосов, станции управления электродвигателями и высоковольтное распределительное устройство всей буровой установки.

В компрессорный блок входят две компрессорные станции, пульт управления, воздухоосушитель и два воздухосборника.

Компрессорная установка предназначена для получения сжатого воздуха, осушки и очистки его и передачи по трубопроводам в систему пневматического управления буровой установки. блока.

Таким образом, основное и вспомогательное оборудование буровой установки расположено на металлических основаниях и перевозится с точки на точку в собранном виде на специальных гусеничных тяжеловозах, что в значительной степени сокращает сроки монтажа установки. Крепления блоков между собой, элементов манифольда, трубопроводов на блоках и в местах стыковки имеют быстроразъемные соединения и компенсаторы длины. В отдельных случаях установка может разбираться и перевозиться универсальным транспортом.

Кинематическая схема установки обеспечивает простоту конструкции и оперативность управления механизмами. В соответствии с принятой схемой лебедка и ротор могут приводиться в движение от одного электродвигателя мощностью 550 кВт, через электромагнитную муфту ЭМС-750, цепную передачу и коробку передач. При отключении электроэнергии бурильные трубы на безопасную высоту можно поднимать при помощи аварийного вспомогательного привода, работающего от резервной дизельной электростанции.

Лебедка и ротор имеют четыре прямые скорости от основного привода и по четыре прямые и обратные скорости от вспомогательного привода. Изменение скоростей лебедки производится путем переключения муфт ШПМ-700 и кулачковой муфты коробки перемены передач. Барабан лебедки включается с помощью муфты ШПМ-1070, расположенной у пульта бурильщика.

Буровые насосы, компрессоры, вибросита, вспомогательная лебедка, имеют самостоятельные индивидуальные приводы.

На данной буровой установке источником питания является дизельная электростанция.

Вторым (резервным) независимым источником является тоже дизельная электростанция, имеющая достаточную мощность для проведения аварийных работ (аварийный подъем бурильной колонны и т.п.).

Для производства работ в ночное время на буровой установке предусматривается электрическое освещение светильниками. Осветительная сеть – на напряжение 220 В переменного тока.

Светильники оборудованы специальными амортизаторами для предотвращения повреждения нити при вибрации светильников.

Питание освещения осуществляется от автоматических выключателей, установленных в шкафу управления вспомогательными механизмами. Для непосредственного подключения светильников на металлоконструкции устанавливаются соединительные коробки.


2 РАСЧЕТНО-ТЕХНИЧЕСКАЯ ЧАСТЬ

2.1 Расчет мощности и выбор электродвигателя буровой лебедки

Режим работы электродвигателей буровой лебедки в процессе подъемных операций является повторно-кратковременным, так как после каждого подъема колонны на одну свечу выполняются вспомогательные операции – отвинчивание, перенос и установка свечи и опускание незагруженного элеватора. Время подъема колонны на одну свечу называют рабочим периодом двигателя tр.

Во время вспомогательных операций tв двигатель лебедки, либо отключается от сети, либо работает с небольшой нагрузкой.

Для выполнения подъемных операций электродвигатель лебедки должен обеспечивать подъем максимально возможного груза на крюке. Максимальную ввозную нагрузку на крюке от массы всей колонны бурильных труб называют номинальной грузоподъемностью буровой установки и обозначают Qн. При этом мощность электродвигателя в кВт, необходимая для подъема колонны весом Qн в кН со скоростью V в м/с, можно определить по формуле:

                                                          (2.1)

где h - к.п.д. подъемной системы от вала электродвигателя до 

      крюка;

     V – установившаяся скорость подъема при номинальной

     нагрузке.

Если выбрать номинальную мощность двигателя Pн по формуле, т.е. Рн = Рпод,, то в рабочие периоды при Q=Qн двигатель будет нагружен до номинальной мощности.

Однако при Q < Qн или при выполнении вспомогательных операций двигатель будет недогружен.

При этом средняя нагрузка на двигатель будет значительно ниже номинальной мощности электродвигателя, и двигатель будет недоиспользован по мощности.

Для полного использования мощности электродвигателя в процессе подъемных операций необходимо учесть повторно-кратковременный характер нагрузки на крюке. Для этого вычисляют эффективную (среднеквадратичную) мощность нагрузки по выражению.

               ,               (2.2)

где с – коэффициент, учитывающий уменьшение веса труб при

     подъеме (0,9)

     hмех – механический к.п.д. передачи от двигателя до крюка

     (0,7¸0,75)

     tп – время подъема 1 свечи, сек

     tв – время вспомогательной операции за цикл подъема

     полной свечи tв = 40 с, если имеется АСП, без АСП –tв =100 с.

     b - коэффициент, учитывающий ухудшения условий

     охлаждения двигателя при его остановках (0,5).

Если двигатель имеет принудительное охлаждение или вращается во время цикла, а включение нагрузки осуществляется муфтами, то a = 1.

Выбранный двигатель должен удовлетворять условию Рэкв £ Рн.

На буровой установке БУ-2500ЭУ применяется буровая лебедка типа БУ-125Э. Выбираем электродвигатель для приведения ее в движение.

Предварительно рассчитаем мощность двигателя по формуле:

                               ,                    (2.3)

Из условия Рдл £ Рн, выбираем двигатель постоянного тока АКБ 550-13-62-8, Рн = 550 кВт, Uн = 6 кВ, h = 93 %, и двигатель постоянного тока СДН14-44-12У3 Рн = 500 кВт, Uн = 6 кВ, h = 0,92,

Делаем проверку выбранного двигателя методом эквивалентной мощности:

;

Зная длину свечи и скорости подъема, определяем время подъема на высоту одной свечи

l = 25 м

                                   tn = l/Vпро ;                          (2.4)

tn = 25/0,2 = 125 с

Так как буровая установка БУ-2500ЭУ не снабжена механизмами АСП, то tв = 100 с.

= 425 кВт

Выбранный двигатель удовлетворяет условию Рэкв £ Рн

425 кВт < 550 кВт.


2.2 Технико-экономическое обоснование выбранного  двигателя      лебедки

Сравниваем по технико-экономическим показателям асинхронный и синхронный двигатели для применения их.


Таблица 2.1 Технические характеристики АД.

Тип

Рн, кВт

Uн, кВ

h cos j
АКБ-13-62-8 550 6 0,93 0,87
СДН14-44-12У3 500 6 0,92 0,9

Среднегодовая нагрузка на валу двигателя Р = 385 кВт

Рассчитываем потери активной мощности АД DРа, кВт:

                              ,                     (2.5)

где Р – среднегодовая нагрузка на валу двигателя, кВт;

     h - к.п.д. двигателя

кВт

Определяем потери активной мощности второго двигателя Ра, кВт:

                                                     (2.6)

кВт

Внесем результаты полученных расчетов в таблицу и определим степень экономичности выбранного электродвигателя.


Таблица 2.2

Показатели Ед. изм. Обозначение Источник АКБ-13-62-8 СДН14-44-12У3
1 2 3 4 5 6
Номинальная мощность кВт

Рном

Исх.данные 550 500
Нагрузка на валу кВт Р Исх.данные 385 385
Коэф.нагр-ки дв-ля

Кз

Р/Рном

0,7 0,77
Капитальн. вложен. руб. К Каталог 117300 139400
Суммарный коэф. отчислений - р Исходные данные 0,225 0,21
КПД % h Каталог 0,93 0,92
Коэф. мощности cosj Каталог 0,87 0,9

Продолжение таблицы 2.3.

1 2 3 4 5 6
Потери акт. мощности кВт Каталог 30 33,5
Стоимость 1кВт/год руб. g Каталог 5280 5280
Стоимость год-ых потерь эн-ии руб/год

Сэ

159984 236544
Годовые затраты руб/год З

+

186376,5 265818
Разность год. затрат руб/год

З21

- 79441,5
Нормальн. коэф. эффективности

Исх. данные 0,15 0,15
Степень экономичности % d

100

66,7

                             З1 = рК + DРg;                                                       (2.7)

З1 =

З2 =

По технико-экономическим показателям выбираем для привода буровой лебедки двигатель АКБ-13-62-8

                               DЗ = З2 – З1                                                        (2.8)

DЗ = 265818 – 186376,5 = 79441,5 р.

                                      (2.9)

=66,7 %

2.3 Расчет электрического освещения

Тип светильников выбирают по исполнению – должно соответствовать условиям окружающей среды. Для взрывоопасных помещений применяют светильники взрывозащищенные типа ВЗГ, ВЧА, ВЗВ, а также НЗБ,НЧБ,НОБ и т.д.

       

             

Рисунок 2.1

Расчет освещения роторного стола выполним точечным методом.

Определяем расстояние d, мм

d1 = d2 = 2250 мм;

d3 = d4 = d5 = d6 = мм

Определяем tq a.

                                ,                           (2.10)

Находим a и cos3a

a1 = 14

a2 = 24

cos3a1 = 0,913

cos3a2 = 0,762

Находим силу тока Iа, кд

Iа1 = 259 кд

Iа2 = 237 кд

Определяем горизонтальную освещенность Ег, лк от условной лампы

                             ,                  (2.11)

лк

лк

Определяем сумму освещенности

                                      (2.12)

лк

Определяем световой поток одной лампы

                     ,                  (2.13)

где kз – коэффициент запаса;

    m - коэффициент отражения.

лм

Определяем мощность одной лампы из условия

                                     Fл £ Fн                                             (2.14)

1737 лм £ 1845 лм

Рлн = 150 Вт

Определяем установленную мощность Руст, Вт

                                  Руст = Рлн п,                                         (2.15)

где п – количество светильников

Вт.

Выбираем 6 взрывонепроницаемые светильников В-3Г-220-150

     

Рисунок 2.2

Расчет освещения палаты верхового выполним точечным методом.

Опредеяем расстояние d, мм

d1 = d2 = 1401 мм;

Определяем tq a.

Находим a и cos3a

a1 = 14

cos3a1 = 0,913

Находим силу тока Iа, кд

Iа1 = 259 кд

Определяем горизонтальную освещенность Ег, лк от условной лампы

лк

Определяем сумму освещенности

лк

Определяем световой поток одной лампы

лм

Определяем мощность одной лампы из условия

1317 лм £ 1845 лм

Рлн = 150 Вт

Определяем установленную мощность Руст,, Вт

Вт.

Выбираем 2 взрывонепроницаемые светильников В-3Г-220-150

Рисунок 2.3

Расчет освещения рамы подкранблочной выполним точечным методом.

Определяем расстояние d, мм

d1 = 1920 мм;

Определяем tq a.

Находим a и cos3a

a1 = 27

cos3a1 = 0,707

Находим силу тока Iа, кд

Iа1 = 259 кд

Определяем горизонтальную освещенность Ег, лк от условной лампы

лк

Определяем сумму освещенности

лк

Определяем световой поток одной лампы

  лм

Определяем мощность одной лампы из условия

1710 лм £ 1845 лм

Рлн = 150 Вт

Определяем установленную мощность Руст, Вт

кВт

Выбираем 1 взрывонепроницаемые светильников В-3Г-220-150

2.4 Расчет электрических нагрузок

Первоначальным этапом проектирования системы электроснабжения – это определение электрических нагрузок. По значению электрических нагрузок выбирают и проверяют электрооборудование системы электроснабжения, определяют потери мощности и электроэнергии. От правильной оценки ожидаемых нагрузок зависят капитальные затраты на систему электроснабжения, расходы на дизельное топливо, надежность работы электрооборудования.

При проектировании системы электроснабжения или анализа режимов ее работы, потребителей электроэнергии рассматривают в качестве нагрузок. Различают следующие виды нагрузок: активную мощность Р, реактивную мощность Q, полную мощность S и ток I.

При расчете силовых нагрузок важное значение имеет правильное определение электрической нагрузки во всех элементах силовой сети. Завышение нагрузки может привести к перерасходу проводникового материала, удорожанию строительства; занижение нагрузки – к уменьшению пропускной способности электрической сети и невозможности обеспечения нормальной работы силовых электроприемников.

Расчет электрических нагрузок основывается на опытных данных и обобщениях, выполненных с применением методов математической статистики и теории вероятности.

Расчет начинают с определения номинальной мощности каждого электроприемника независимо от его технологического процесса средней мощности: мощности, затраченной в течение наиболее загруженной смены и максимальной расчетной мощности участка, цеха, завода или объекта

Рассчитываем нагрузку на двигатель буровой лебедки по методу коэффициента спроса

                                                                       (2.16)

Находим активную мощность ,  кВт, по формуле:

                                                (2.17)

 Определяем среднесменную реактивную мощность электродвигателя лебедки QСР.Л, квар, по формуле:

                                                                              (2.18)

 Определяем полной мощность электродвигателя лебедки SЛ, кВА, по формуле::

                                                           (2.19)


Таблица 2.3 Электрооборудование на 0,4 кВ.

Потребитель Кол

РН, кВт

cosj tgj

КИ

Назначение
Электродвигатель 22 500 0,92 0,43 О,5 Для бурового насоса
Электродвигатель 1 5,5 0,86 0,59 0,3 Для водяного насоса
Электродвигатель 11 19 0,88 0,54 0,3 Вспомогательный
Электродвигатель 22 1,5 0,81 0,73 0,5 Для вибросит
Электродвигатель 11 22 0,9 0,48 0,5 Для илоотделителя
Электродвигатель 11 22 0,9 0,48 0,5 Для песоотделителя
Электродвигатель 11 18 0,87 0,57 0,2 Для глиномешалки
Электродвигатель 66 7,5 081, 0,73 0,5 Для перемешавателя
Электродвигатель 11 3 0,86 0,59 0,5 Для вентиляции
Электродвигатель 11 40 0,88 0,54 0,3 Для компрессора Н.Д.
Светильники 99 13,5 0,95 0,32 0,85 Для освещение буровой
Электродвигатель 1 7,5 0,81 0,73 0,2 Для ГСМ

Определяем суммарную номинальную мощность - РНОМ, кВт, всех потребителей:

                                          (2.20)

кВт

         Определяем суммарную среднесменную активную мощность РСМ кВт, по формуле:

                                                         (2.21)

Определяем суммарную среднесменную реактивную мощность QСМ, квар, по формуле:

                                                              (2.22)

Определяем средний коэффициент использования КИ СР по формуле:

                                                              (2.23)

Определяем коэффициент силовой сборки m по формуле:

                                                                               (2.24)

Определяем эффективное число электроприемников nЭ по формуле:

                                                                 (2.25)

n = 6.

КИ СР  = 0,3

         КМАХ = 1,88

Определяем максимальную активную мощность РМАХ, кВт, по формуле:

                                                                     (2.26)

Определяем максимальную реактивную мощность QМАХ, квар, по формуле:

                                                                       (2.27)

        

Определяем максимальное значение полной мощности SМАХ, кВА, по формуле:

                                           (2.28)

2.5 Выбор числа и мощности дизель электростанции

Выбор дизель-электростанции производится по коэффициенту загрузки Кз = 0,7.

                             ,                    (2.29)

где n = 1  число дизель-электростанции

При n= 3

Выбираем три АС-630/51-АН дизель-электростанции. На буровой установке устанавливаем три дизель-электростанции   АС-630/51-АН, повышающий трансформатор  0,4/6 кВ для питания двигателя буровой лебедки. Резервное питание обеспечивается с помощью дизель-электростанции АСДА-200

2.6 Технико-экономическое обоснование выбранного типа дизель –          электростанции

В данном дипломном проекте мною выбрана комбинация 3 ДЭСа по 630 кВт. Мною подсчитано, что данная комбинация является самой оптимальной для работы БУ 2500ЭУ.

Обоснование. Допустим, возможен выбор 9 ДЭС по 200 кВт. Результатом будет являться увеличением площади, занимаемой энергоблоком, а также увеличение потребления дизельного топлива, в результате чего мы получаем большие затраты в эксплуатации энергоблока.

Для работы данной буровой установки возможен другой вариант: использование комбинации 2 дизеля по 1000 кВт. В результате использования этих ДЭС получается, что они будут работать при определенных режимах загрузки бурового оборудования в мало загруженном режиме, что часто приводит к коксованию поршневой системы, и, следовательно, к преждевременному выхода из строя дизеля, что повлечет за собой простой всей буровой установки на длительное время.

Вывод: для данной БУ 2500ЭУ 3 ДЭС по 630 кВт является самой экономичной в использовании. Также в результате оптимальной нагрузке двигателя мото-часы остаются в норме.

2.7 Расчет токов короткого замыкания

Коротким замыканием называют всякое случайное или преднамеренное, не предусмотренное нормальным режимам работы, элек трическое соединение различных точек электроустановки между собой или землёй, при котором токи в ветвях электроустановки резко возрастают, превышая наибольший допустимый ток продолжительного режима.

В системе трехфазного переменного тока могут быть замыкания между тремя фазами - трехфазные короткие замыкания, между двумя фазами - двухфазные короткие замыкания. Если нейтраль электроэнергетической системы соединена с землей, то возможны однофазные короткие замыкания. Чаще всего возникают однофазные короткие замыкания (60 - 92% общего числа коротких замыканий), реже трехфазные короткие замыкания (1 - 7%).

Возможны двойное замыкание на землю в различных, но электрически связанных частях электроустановки в системах с незаземленными или резонансно-заземленными нейтралами.

Как правило, трехфазные короткие замыкания вызывают в поврежденной цепи наибольшие токи, поэтому при выборе аппаратуры обычно за расчетный ток короткого замыкания принимают ток трехфазного короткого замыкания.

Причинами коротких замыканий могут быть: механические повреждения изоляции - проколы и разрушение кабелей при земляных работах; поломка фарфоровых изоляторов; падение опор воздушных линий; старение, т.е. износ, изоляции, приводящее постепенно к ухудшению электрических свойств изоляции; увлажнение изоляции; различные набросы на провода воздушных линий; перекрытие фаз животными и птицами; перекрытие между фазами вследствие атмосферных перенапряжений. Короткие замыкания могут возникнуть при неправильных оперативных переключениях, например при отключении нагруженной линии разъединителем, когда возникающая дуга перекрывает изоляцию между фазами.

Последствиями коротких замыканий являются резкое увеличение тока в короткозамкнутой цепи и снижение напряжения в отдельных точках системы. Дуга, возникшая в месте короткого замыкания, приводит к частичному или полному разрушению аппара тов, машин и других устройств. Увеличение тока в ветвях электроустановки, примыкающих к месту короткого замыкания, приводит к значительным механическим воздействиям на токоведущих части и изоляторы, на обмотки электрических машин. Прохождение больших токов вызывает повышенный нагрев токоведущих частей и изоляции, что может привести к пожару в распределительных устройствах, в кабельных сетях и других элементах энергоснабжения и будет причиной дальнейшего развития аварии.

Снижение напряжения приводит к нарушению нормальной работы механизмов, при напряжении ниже 70% номинального напряжения двигатели затормаживаются, работа механизмов прекращается. Еще большее влияние снижение напряжения оказывает на работу энергосистемы, где могут быть нарушены условия синхронной параллельной работы отдельных генераторов или станций между собой.

Ток короткого замыкания зависит от мощности генерирующего источника, напряжения и сопротивления короткозамкнутой цепи. В мощных энергосистемах токи короткого замыкания достигают нескольких десятков ампер, поэтому, последствия таких ненормальных режимов оказывают существенное влияние на работу электрической установки.

Для уменьшения последствий коротких замыканий необходимо как можно быстрее отключить поврежденный участок, что достигается применением быстродействующих выключателей и релейной защиты с минимальной выдержкой времени. Немаловажную роль играют автоматическое регулирование и форсировка возбуждения генераторов, позволяющие поддерживать напряжение в аварийном режиме на необходимом уровне.


Рисунок 2.4- Расчетная схема     Рисунок 2.5- Схема замещения

Расчет ведем в относительных единицах. Задаемся базисной мощностью Sб = 100 МВА.

Определяем сопротивление генератора

                      ;                      (2.30)

Определяем сопротивление кабельной линии

                                     (2.31)

                                                

Определяем сопротивление трансформатора:

                                       (2.32)

Определяем сопротивление кабельной линии

                                   (2.33)

Определяем базисный ток для точки К1:

                                              (2.34)

Определяем ток короткого замыкания в точке К1:

                                                 (2.35)

                                       (2.36)

Определяем базисный ток во второй точке:

                                           (2.37)

Определяем базисный ток в третий точке

Определим ударные токи:

                                                    (2.38)

                                                  (2.39)

         

                                                   (2.40)

В точке третьей точке учитываем ток подпитки от двигателя:

                                                   (2.41)

                                                     (2.42)

                                                           (2.43)

Определяем мощность короткого замыкания в заданных точках:

                                                   (2.44)

2.8 Расчет и выбор распределительных сетей

Кабель - готовое заводское изделие, состоящее из изолированных токоведущих жил заключенных в защитную герметичную оболочку, которая может быть защищена от механических повреждений.

Силовые кабели выпускаются напряжением до 110 кВ включительно. На буровой установке будем выбирать кабели марки КГ - для двигателей и освещения.

Сечение кабеля при напряжении выше 1000 В выбираем согласно ПУЭ по экономической плотности тока.

Считая, что график работы двухсменной и максимальный ток IМАХ = 4000 ч рассчитываем сечение.

Выбираем кабель длиной l = 0,05 км подводящего питание к двигателю буровой лебедки на напряжение U = 6 кВ.

Расчетный ток в кабеле подводящий питание к двигателю буровой лебедки  IР , А по формуле:

                                               (2.45)

Рассчитываем сечение кабеля по экономической плотности тока

                                                    (2.46)

где =2,7 А/мм

Подбираем стандартное значение сечения кабеля с медными жилами.

                                                        (2.47)

Выбираем кабели для подвода питания к двигателю буровой лебедки. марки КГ 4 25

Проверяем кабель на потерю напряжения, DU, В:

                     (2.48)

где Rо - активное сопротивление линии Rо = 1,24 Ом/км

L - длина линии, км

cosj - коэффициент мощности

Проверяем кабель на температуру нагрева, tн °С:

                            tн = to + [(tдоп - to)(I/Iдоп)2],                         (2.49)

где tо - начальная температура, tо = 20 °С

tдоп - допустимая температура, °С.

tн = 15 + [(65 - 15)(60,6/75) 2] = 44°С,

что удовлетворяет условию

                                  tн < tдоп                                                  (2.50)

44°С < 65°С

Кабель выбран верно.

Выберем кабель для питания РЩ

Предположим к выбору девять одножильных кабелей с сечением S= 185 с

Кабель выбираем из условия . Выбираем кабель КГ1 185

385 1,25 А < 525 А.

Проверим кабель на потерю напряжения

                (2.51)

                                          (2.52)

Проверим кабель по нагреву

                              tнаг = to + [(tдоп - to)(Iр/Iдоп)2],         (2.53)

tнаг = 20 + [(65 - 20)(182/185) 2] = 52,3 °С,

52,3°С < 65°С

Кабель выбран верно.

Другие кабели выбираются аналогично и их марки записаны в таблице 2.3

Таблица 2.3

Назначение Длина м Марка
1 2 3
Для питания вспомогательной лебедки 50 КГ4x6
Для питания привода ВШН 50 КГ4x10
Для питания привода глиномешалки 50 КГ4x10
Для питания привода перемешивателя 200 КГ4x6
Для питания аварийного привода 50 КГ4x25
Для питания привода компрессора низкого давления 50 КГ4x25
Для питания электродвигателя крана 50 КГ4x2,5
Для питания электродвигателя ГСМ 50 КГ4x2,5
Для питания охлаждения и смазки штоков 50 КГ4x2,5
Для питания электродвигателя маслонасоса 50 КГ4x2,5
Для питания привода компрессора в. д. 50 КГ4x1,5
Для питания электродвигателя водяного насоса 50 КГ4x2,5
Для питания освещения вышки 50 КГ3x2,5
Для питания превентера 50 КГ4x4
Для питания ТЭП 50 КГ4x4
Для питания сварочного трансформатора 50 КГ4x10
Для питания электродвигателя насоса ЯМГ 50 КГ4x2,5
Для питания освещения буровой 50 КГ3x2,5
Для питания электродвигателя вибросита 50 КГ4x2,5
Продолжение таблицы 2.3
1 2 3
Для питания освещения желобов 50 КГ3x2,5
Для питания ВАСТ 50 КГ4x2,5
Для питания освещения энергоблока 50 КГ3x2,5
Резерв 1 50 КГ4x25
Резерв 2 50 КГ4x25
Питание РЩ 2 50 КГ4x70
Питание РЩ 3 50 КГ4x70
Электродвигатель буровой лебедки 50 КГ4x25
Питание РЩ 1 100 КГ4x25
Для питания электродвигателей насосов 100 КГ4x120
Для питания РЩ 450

КГ1x185

КГ1x120

2.9 Выбор высоковольтного электрооборудования с проверкой на устойчивость к токам короткого замыкания

Выбираем шкаф комплектного распределительного устройства для питания, управления и защиты электрооборудования главных механизмов буровой установки. Выбор КРУ произведем по току и напряжению, с проверкой на устойчивость Iкз.

Определим рабочий ток.

                                  ;                         (2.54)

Таблица 2.4

Расчетные значения Табличные значения

Iр = 60,6 А

Iн = 630 А

Uр = 6 кВ

Uн = 6, 10 кВ

Iуд = 1,2 кА

Iуд = 32 кА

Iк2·tпр = 0,482·0,2 = 0,23 МА2·с

It2·t t= 12,52·1 = 156,25 МА2·с

Выбираем комплектное распределительное устройство КРУЭ-6-У2В, технические характеристики которого сводим в таблицу.

Таблица 2.5

Характеристики Значение параметров
Номинальное напряжение, кВ 6
Наибольшее рабочее напряжение, кВ 7,2
Номинальный ток, А 630
Номинальный ток отключения вакуумного выключателя, встроенного в шкаф, кА 12,5
Ток термической стойкости, кА 12,5
Ток термической стойкости заземляющих ножей в течении 1 с, кА 20
Номинальный ток электродинамической стойкости главных цепей шкафа, кА 32

В состав шкафа входит вводной разъединитель, с заземлителем вводного кабеля, вакуумный выключатель высокого напряжения, трансформаторы тока,

Произведем выбор перечисленного электрооборудования.

Разъединитель выбирается по номинальному току, напряжению, проверяется на термическую и динамическую устойчивость к токам короткого замыкания.

Разъединитель обеспечивает включения и отключения электрических цепей без нагрузки и создает видимое место разрыва силовой цепи.

Выбирается разъединитель внутренней установки с заземляющими ножами типа РВЗ-10/630ШУ3 с приводом ПР-10.

Таблица 2.6        

Расчетные значения Табличные значения

Iр = 60,6 А

Iн = 630 А

Uр = 6 кВ

Uн = 10 кВ

Iуд = 1,2 кА

Iуд = 25 кА

Iк2·tпр = 0,482·0,2 = 0,23 МА2·с

It2·t t= 102·4 = 400 МА2·с

Разъединитель РВЗ-10/630ШУ3 подходит по всем параметрам.

Выключатель силовой выбирается по току, напряжению, проверяется на термическую и динамическую устойчивость к токам короткого замыкания на отключающую способность. Вакуумный выключатель обеспечивает включения и отключения силовой цепи под нагрузкой и при возникновении токов короткого замыкания.

Выбираем вакуумный выключатель ВВ/ТЕL-10-12,5/1000У2.


Таблица 2.7

Расчетные значения Табличные значения

Iр = 60,6 А

Iн = 1000 А

Uр = 6 кВ

Uн = 10 кВ

Iуд = 1,2 кА

Iоткл = 12,5кА

Iк2·tпр = 0,482·0,2 = 0,23 МА2·с

It2·t t= 12,52·1 = 156,25 МА2·с

Вакуумный выключатель ВВ/ТЕL-10-12,5/1000У2 подходит.

Для питания токовых цепей измерительных приборов выбираем трансформатор тока ТОЛ-10-1-2У2

Таблица 2.8        

Расчетные значения Табличные значения

Iр = 96,3 А

Iн = 100А

Uр = 6 кВ

Uн = 10 кВ

Iуд = 1,2 кА

Iуд = 250 кА

Iк2·tпр = 0,482·0,2 = 0,23 МА2·с

It2·t t= 6075 МА2·с

Трансформатор тока ТОЛ-10-1-2У2 подходит по всем параметрам.

Выбираем трансформатор напряжения для питания цепей напряжения измерительных приборов. Во вторичной обмотке трансформатора напряжения подключаются обмотки напряжения счетчиков активной и реактивной энергии, вольтметра, реле минимального напряжения. Трансформатор напряжения выбирается по номинальному напряжению, проверяется по мощности приборов во вторичной обмотке.

Выбираем трансформатор напряжения НОЛ-0,8-6-УТ2: U = Uном, 6кВ = 6кВ.

                                      Sн > Sпр,                                                 (2.55)

где Sн - номинальная мощность трансформатора напряжения;

Sпр - суммарная мощность приборов, подключенных ко вторичной обмотке.

                             Sпр = S1 + S2 + S3 + S4                                 (2.56)

где S1 - мощность, потребляемая обмоткой напряжения счетчика активной энергии; S1 = 8 ВА;

S2 - мощность потребляемая обмоткой напряжения счетчика реактивной энергии, S2 = 8 ВА;

S3 - мощность, потребляемая реле минимального напряжения,   S3 = 15 ВА.

S4 - мощность, потребляемая вольтметром, S4 = 2,6 ВА.

Sпр = 8 + 8 + 15 + 2,6 = 33,6 ВА

Sн = 75 ВА

75 ВА > 33,6 ВА.

Трансформатор напряжения выбран верно.

Для защиты от атмосферных и коммутационных перенапряжений выбираем ограничитель перенапряжения ОПН-КР/ТЕL-6/6,0УХЛ2 на напряжение Uн = 6 кВ.

2.10 Выбор пусковой и защитной аппаратуры на 0,38 кВ

В качестве пусковой и защитной аппаратуры выберем автоматические выключатели и магнитные пускатели.

Автоматические выключатели применяются для включения и отключения электрической цепи на U < 1000 В и для защиты электрооборудования от токов короткого замыкания и токов перегрузки.

Произведем выбор общего автомата, установленного после дизель- электростанции.

Автоматы выбираются по номинальному току и току срабатывания расцепителя, проверяются на устойчивость к действию токов короткого замыкания.

Определим рабочий ток на напряжение 0,4 кВ:

                                                    (2.57)

.

Ток срабатывания расцепителя:

                                                       (2.58)

Ток кратковременный определяется с учетом пускового тока наибольшего двигателя:

Iкр = Iр + Iп1 - Iн1,

Ток наибольшего двигателя насоса.

                                                    (2.59)

                           ;                    (2.60)

где Кп - коэффициент пуска, Кп = 2 ¸ 7.

Iкр = 958 + 1836 - 918 = 1876 А

Из условия

                                 Iр £ Iн                                  (2.61)

                                 Iсрр £ Iнсрр                                                 (2.62)

Выбираем автоматический выключатель ВА-53-41, Iн = 1000 А,

 Iср.р = 3000 А.

958 А < 1000 А

2345 А < 3000 А

Проверим автомат на устойчивость к действию тока короткого замыкания.

                                                    (2.63)

4666 А > 3000 А

Автомат выбран верно.

Произведем выбор автоматического выключателя для двигателя буровой лебедки

Iр = 65,5 А

Iп = 261

Выбираем автомат ВА-51-31-1, Iн = 80 А, Iср.р = 560 А.

65,5 А < 80 А

326 А < 560 А.

Проверим по току короткого замыкания

4666 А > 560 А

Автомат выбран верно.

Другие автоматы выбираются аналогично и их марки записаны в таблице 2.9


Таблица 2.9 Маркировка автоматов

 

 

 

 

 

 

 

содержание   ..  337  338  339   ..

 

Примечание Кол. Тип
Электродвигатель вспомогательный лебедки 1 ВА 51-31
Привод ВШН 1 ВА 51-35
Привод глиномешалки 1 ВА 51-31
Привод перемешивателя 4 ВА 51-25
Электродвигатель аварийного привода 1 ВА 51-31
Привод компрессора низкого давления 1 ВА 51-31
Электродвигатель крана 2 ВА 51-31
Электродвигатель ГСМ 1 ВА 51-25
Охлаждение и смазка штоков 1 ВА 51-25
Электродвигатель маслонасоса 1 ВА 51-25
Привод компрессора высокого давления 1 ВА 51-25
Электродвигатель водяного насоса 1 ВА 51-25
Освещение вышки 1 ВА 51-25
Превентер 1 ВА 51-25
ТЭП 1 ВА 51-25
Сварочный трансформатор 1 ВА 51-31
Электродвигатель 1 ВА 51-31
Освещение буровой 1 ВА 51-25
Электродвигатель вибросита 2 ВА 51-25
Освещение желобов 1 ВА 51-25
ВАСТ 1 ВА 51-31
Освещение энергоблока 1 ВА 51-25
Резерв 1 1 ВА 51-31