Способы обработки осадков природных вод

  Главная      Учебники - Очистка воды     ОБЕСПЕЧЕНИЕ ВЫПОЛНЕНИЯ ТРЕБОВАНИЙ САНИТАРНЫХ ПРАВИЛ И НОРМ СанПиН 2.1.4.559—96 МДС 40-3.2000

 поиск по сайту           правообладателям

 

 

 

 

 

 

 

 

 

содержание   ..  9  10  11  12  13  14  15  16  17  18  19  20  ..

 

 

4.2.2.

Способы обработки осадков природных вод

 

Отечественная практика промышленной обработки осадков природных вод находится в стадии освоения технологических процессов, поэтому в настоящее время готовых типовых решений не существует. Выбор оптимальной технологии должен основываться на экспериментальных исследованиях с реальным осадком и с учетом существующей технологической схемы обработки воды и образования осадка, а также других факторов.

Можно выделить несколько основных способов обработки осадков:

- механическое обезвоживание осадков с реагентами на камерных и ленточных фильтрах-прессах, центрифугах и других аппаратах;

- обработка осадка природных вод совместно с осадками сточных вод на станциях очистки сточных вод;

- обработка осадка с одновременной регенерацией коагулянта;

- естественное замораживание и оттаивание осадка на площадках замораживания в соответствии с климатическими условиями и др.

Наиболее широко применяемым способом обработки осадков за рубежом и отработанным в опытно-промышленных условиях на некоторых российских станциях является их механическое обезвоживание с предварительным кондиционированием различными реагентами: известью, флокулянтами анионного, неионогенного и катионного типов; коагулянтами.

Исследования показали, что известь при введении в осадок выполняет двойную функцию: как химический реагент, частично растворяющий гелеобразный гидроксид алюминия, и как присадочный материал, снижающий величину показателя сжимаемости. Эта совокупность действий приводит к улучшению фильтрационных свойств осадка, и, кроме того, известь оказывает обеззараживающее действие.

4.2.2.1. Механическое обезвоживание осадков

Механическое обезвоживание осадков природных вод на станциях водоподготовки может осуществляться на камерных и ленточных фильтрах-прессах. Принципиальная технологическая схема обработки осадков на камерных фильтрах-прессах приводится на рис. 10 и включает в себя следующие операции:

- усреднение и уплотнение осадков;

- приготовление растворов известкового молока и флокулянта;

- дозированное введение химических реагентов в осадок;

- дозированная подача кондиционированного осадка в аппараты механического обезвоживания;

- механическое обезвоживание;

- выгрузка и транспортирование обезвоженного осадка.

В зависимости от технологических схем очистки воды усреднению и уплотнению подвергаются осадки из отстойников и осадки, образующиеся при усреднении и отстаивании промывных вод фильтров и контактных осветителей.

Уплотнение осадков является необходимым приемом, так как исходный осадок, особенно маломутных цветных вод, имеет высокую влажность (99 % и выше). В процессе гравитационного уплотнения влажность осадков снижается до 92—98 % в зависимости от их исходного качества. Для интенсификации уплотнения возможны медленное перемешивание и обработка флокулянтами.

Для кондиционирования осадков наиболее целесообразно использовать сочетание извести с флокулянтами, преимущественно анионного типа. Известь используется в виде 10%-го известкового молока; флокулянт в виде (0,1¸0,2)%-го рабочего раствора, приготовление которого осуществляется в специальных установках или баках с диспергаторами и мешалками. Первоначально в осадок вводится известь (в количестве 20—80 % от массы сухого вещества), а затем раствор флокулянта (до 2 кт/т), который целесообразно дозировать винтовым насосом-дозатором.

 Камерные фильтры-прессы (см. рис. 10) типа ФПАКМ и некоторые конструкции зарубежных фирм являются наиболее распространенными аппаратами.

Режим их работы включает следующие операции: подачу кондиционированного осадка под давлением в фильтр-пресс; фильтрование под давлением; отжим; выгрузку кека и регенерацию ткани.

Влажность обезвоженного осадка после обработки составляет 60—75 %. Для предварительных расчетов, связанных с использованием фильтров-прессов типа ФПАКМ, для обезвоживания осадков природных вод различного качества могут быть рекомендованы исходные данные, приведенные в таблице.

 

Отношение Ц/М исходной воды,

град × л/м

Доза извести (в пересчете на СаО от массы сухого вещества), %

Давление, МПа

Продолжи-тельность фильтровального цикла, с

Влажность обезвожен-ного осадка, %

Производи-тельность, кг/(м2×ч)

 

 

фильтрации

отжима

 

 

 

Более 10

60-80

0,45

1,08

1500

75

6,2-7,9

5-10

40-60

0,57

1,14

1000

65

7,9-10,1

Менее 5

20-40

0,68

1,26

900

60

10,1-10,9

 

 

Рис. 10. Принципиальная технологическая схема обработки осадка

на камерных фильтрах-прессах:

1 — уплотнитель исходного осадка; 2 — приемный резервуар осадка; 3 — насос

быстрого заполнения; 4 — насос высокого давления; 5 — расходомер; 6 — узел

смешения; 7 — манометр; 8 — камерный фильтр-пресс; 9 — резервуар воды для

промывки фильтра-пресса; 10 — насос на промывку; 11 — шнековый транспортер;

12 — расходный бак-мешалка; 13 — шнековый транспортер; 14 — фильтр;

15 — силосная башня; 16 — вибратор; 17 — шнековый насос-дозатор;

18 — расходный бак флокулянта; 19 — узел приготовления раствора флокулянта

 

• При обработке осадков на ленточных фильтрах-прессах не требуется использования насосов высокого давления, режим работы этих аппаратов не циклический, как на камерных, а непрерывный. Влажность обезвоженного на ленточном фильтре-прессе осадка зависит от качества самого осадка, дозы извести и может составлять 70—85 %.

 Вакуум-фильтры имеют ограниченную применимость для обработки гидроксидных осадков природных вод. Производительность этих аппаратов для обработки осадков, содержащих гидроксид алюминия, получается весьма низкой, а влажность кека порядка 80 %. Область же применения вакуум-фильтров на практике ограничивается осадками вод, при очистке которых используется подщелачивание известью с последующей коагуляцией железосодержащими реагентами и осадков от известкового умягчения.

 Центрифуги пока не получили широкого распространения для безреагентного обезвоживания осадков, содержащих гидроксид алюминия. Концентрация твердых веществ после обезвоживания таких осадков не превышает 12 %. Для повышения концентрации необходимо предварительное сгущение исходных осадков с добавлением извести, флокулянта, других реагентов.

Основным недостатком метода механического обезвоживания гидроксидных осадков, сдерживающим его широкое распространение, является относительно большой расход дорогой извести.

4.2.2.2. Обработка осадка природных вод совместно с осадками сточных вод на станции очистки сточных вод

Данный метод является экономически выгодным, так как не требует больших капитальных затрат на его реализацию. На водопроводной станции необходимо строительство резервуара-усреднителя осадка и насосной станции. На станции очистки сточных вод требуется лишь некоторое увеличение эксплуатационных затрат. Существенным преимуществом является и то, что персоналу станции, где имеется цех механического обезвоживания, не требуется дополнительная профессиональная подготовка.

При сбросе осадка в канализацию для предотвращения заиливания трубопроводов необходимо соблюдать уклон: при диаметрах трубопроводов 300 мм и менее угол наклона должен быть не менее 5°, при диаметрах в 400 мм и более — не менее 1,5°.

При сбросе осадков природных вод в канализацию количество осадков на станции очистки сточных вод увеличивается на 2—5 %, максимально — на 10—20 %.

4.2.2.3. Обработка осадков станций водоподготовки с одновременной регенерацией коагулянта

На станциях водоподготовки, осуществляющих обработку воды с низким значением рН, целесообразно осуществлять обработку осадка с одновременной регенерацией коагулянта в виде щелочного раствора.

Для регенерации коагулянта в усредненный осадок вводится известковое молоко до рН 10,5¸11,5. При этом происходит переход части гидроксида алюминия в раствор в виде гидроксоалюминатов кальция. Разделение реакционной массы на жидкую фракцию, представляющую раствор щелочного коагулянта с концентрацией до 400-800 мг/л по Al2O3, и осадок осуществляется методом гравитационного отстаивания.

Оптимальные условия обработки осадка известью, обеспечивающие эффективное использование гидроксида алюминия:

- мольное отношение CaО/Al2O3 в реакционной смеси » 3;

- концентрация Al2O3 в реакционной смеси, которая устанавливается соответствующим разведением или концентрированием осадка от 1 до 3 г/л, равняется 0,46—0,67 г/л;

- растворимость Al2O3 равняется 25—46 %;

- значение рН смеси составляет 11,2—11,7.

Щелочной регенерированный коагулянт используется в сочетании с товарным сульфатом алюминия, доза которого может быть сокращена на 20—40 %. Использование регенерированного коагулянта приводит к увеличению остаточных значений рН и щелочности обработанной воды, а также к снижению ее коррозионной активности, что позволяет исключить или снизить расход реагентов, необходимых для подщелачивания и стабилизации обработанной воды.

Вторичные осадки отличаются от исходных по химическому составу и свойствам. Содержание гидроксида алюминия во вторичных осадках на 20—40 % ниже, чем в исходных, а содержание CaO возрастает до 30—45 %, влажность осадка составляет 98,5—96 %, рН = 11,2-12,0. Удельное сопротивление фильтрации вторичных осадков снижается до величин, обеспечивающих возможность их механического обезвоживания без дополнительного введения извести. Вторичные осадки могут быть обезвожены на вакуум-фильтрах и фильтрах-прессах. При обезвоживании на вакуум-фильтрах продолжительность фильтроцикла составляет 2—3 мин, влажность обезвоженного осадка 70—77 %, удельная производительность вакуум-фильтра 10—15 кг/м2×ч). В результате обезвоживание на фильтре-прессе типа ФПАКМ влажность осадка снижается до 55—60 %, удельная производительность фильтра-пресса 3,5—5 кг/(м2×ч).

4.2.2.4. Обезвоживание методом замораживания — оттаивания осадка

Процесс замораживания—оттаивания осадка характеризуется изменением количественного соотношения между находящейся в структуре осадка связанной влагой и свободной в сторону увеличения последней. Однако это явление наблюдается только при определенных условиях теплообмена между осадком и охлаждающей средой. Такие условия обеспечиваются в процессе естественного замораживания осадка на открытом воздухе и в специальных резервуарах, оборудованных трубчатыми теплообменными элементами, в которых попеременно испаряется и конденсируется хладагент (аммиак). Чем выше интенсивность замораживания, которая определяется плотностью теплового потока, тем меньше количество связанной воды успевает перейти в свободное состояние. В то же время, с увеличением теплового потока возрастает количество замороженного осадка. Для каждого типа осадка существует допустимый уровень плотности теплового потока, превышение которого не приводит к существенным изменениям водоотдающей способности осадка после оттаивания, и она сохраняется такой же, как у исходного осадка.

 

4.2.3. Утилизация осадков

 

Утилизация осадков зависит от химического состава, который определяется качеством исходной воды и видами используемых реагентов в процессе водоподготовки и обработки осадков.

Осадки могут являться исходным сырьем при производстве различных строительных материалов; бетонной смеси, цементов, кирпича, керамзита и др., а также могут быть использованы для улучшения структуры плодородия почв.

 

 

4.2.4. Использование промывной воды

 

Промывную воду после фильтровальных сооружений на практике и в проектных решениях предусматривается сбрасывать на сооружения для осветления промывных вод и частичного возврата отстоенной воды в "голову" очистных сооружений (в смесители или входные камеры). Поскольку это может привести к нарушению процессов коагуляции и технологических режимов очистки, в каждом случае следует обоснованно принимать решение о таком использовании промывных вод.

Одним из способов повышения эффективности обработки промывных вод фильтров являются указанные выше конструкции: оборудование шламоуплотнителей тонкослойными блоками или устройство рециркуляторов (стр. 22, 24).

 

 

 

 

 

 

 

содержание   ..  9  10  11  12  13  14  15  16  17  18  19  20  ..