Главная      Учебники - Разные     Лекции (разные) - часть 16

 

Поиск            

 

Указания методические по определению устойчивости энергосистем часть II

 

             

Указания методические по определению устойчивости энергосистем часть II

МИНИСТЕРСТВО ЭНЕРГЕТИКИ И ЭЛЕКТРИФИКАЦИИ СССР

ГЛАВНОЕ ТЕХНИЧЕСКОЕ УПРАВЛЕНИЕ ПО ЭКСПЛУАТАЦИИ ЭНЕРГОСИСТЕМ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

ПО ОПРЕДЕЛЕНИЮ УСТОЙЧИВОСТИ ЭНЕРГОСИСТЕМ

Часть II

РД 34.20.578-79

УДК 621.311.019.34 (083.96)

Подготовлены ВНИИЭ, МЭИ, ВГПИиНИИ Энергосетьпроект, ЦДУ ЕЭС СССР, ИЭД АН УССР и НИИПТ: введение - ВНИИЭ, ЦДУ ЕЭС СССР, ИЭД; гл. 1 - ВНИИЭ, ЦДУ ЕЭС СССР; гл. 2 - МЭИ, Энергосетьпроект, ВНИИЭ; гл. 3 - МЭИ, Энергосетьпроект; гл. 4 - МЭИ, Энергосетьпроект; гл. 5 - ВНИИЭ, МЭИ; гл. 6 - ВНИИЭ, МЭИ; гл. 7 - ВНИИЭ, НИИПТ, ЦДУ ЕЭС СССР; гл. 8 - МЭИ; гл. 9 – ИЭД; гл. 10 - ВНИИЭ, ЦДУ ЕЭС СССР; приложения - ВНИИЭ, МЭИ, Энергосетьпроект, НИИПТ, ИЭД.

Составители д-р техн. наук Л.Г. МАМИКОНЯНЦ (введение, гл. 1, 5-7, 10), канд. техн. наук Л.М. ГОРБУНОВА. (гл. 6), канд. техн. наук Ю.Е. ГУРЕВИЧ (гл. 6, приложения 1, 11, 12), инж. Л.Е. ЛИБОВА (гл. 2) канд. техн. наук В.Ф. ТИМЧЕНКО (гл. 7), д-р техн. наук А.А.ХАЧАТУРОВ (гл. 5, 8, приложения 1, 8, 9), ВНИИЭ; д-р техн. наук В.А. ВЕНИКОВ (гл. 2-6, 8, приложение 1), канд. техн. наук Н.Д. АНИСИМОВА (гл. 3, 8, приложения 3, 4, 14), д-р техн. наук Л.А. ЖУКОВ (гл. 2, 5), д-р техн. наук И.В. ЛИТКЕНС (гл. 3, приложения 5, 6), канд. техн. наук В.Д. СТРОЕВ (гл. 3, 6, приложение 10), канд. техн. наук Д.А. ФЕДОРОВ (гл. 4, 5), канд. техн. наук А.Н. ЦОВЬЯНОВ (гл. 4), МЭИ; д-р техн. наук Д.И. АЗАРЬЕВ (гл. 2-4), инж. Ю.А. КИШКИН (гл. 2, приложения 2, 18). инж. Ю.В. МОРОШКИН (гл. 3), инж. Ю.А. ПОЗДНЯКОВ (гл. 3, 4, приложение 7), канд. техн. наук З.Г. ХВОЩИНСКАЯ (гл. 2, приложение 18), инж. Л.П. ШИПУНОВА (гл. 2), Энергосетьпроект; д-р техн. наук C.А. COBАЛOB (введение, гл. 1, 7, 10, приложение 1), канд. техн. наук М.Г. ПОРТНОЙ (гл. 7, 10), ЦДУ ЕЭС СССР; д-р техн. наук Л.В. ЦУКЕРНИК (гл. 9, приложения 15, 16, 17), ИЭД; канд. техн. наук Е.А. МАРЧЕНКО (гл. 7, приложение 13), канд. техн. наук В.А. АНДРЕЮК (гл. 7, приложение 13), НИИПТ.

Редакционная коллегия:

Д.И. АЗАРЬЕВ, В.А. ВЕНИКОВ, Л.Г. МАМИКОНЯНЦ, С.А. СОВАЛОВ, А.А.ХАЧАТУРОВ

Методические указания предназначены для специалистов проектных институтов и эксплуатирующих организаций Минэнерго СССР.

Все замечания и предложения по Методическим указаниям направлять по адресу: 103074, Москва, К-74, Китайский пр., д. 7, Главное техническое управление по эксплуатации энергосистем Минэнерго СССР.

Глава 6. УСТОЙЧИВОСТЬ НАГРУЗКИ

6.1. Статическая устойчивость нагрузки

6.1.1. В качестве основного фактора, определяющего статическую устойчивость нагрузки, следует рассматривать наличие в составе комплексной нагрузки вращающихся машин-асинхронных и синхронных двигателей, что в определенных условиях может приводить к лавине напряжения*. Такая неустойчивость проявляется, в первую очередь, в снижении напряжения на шинах узла нагрузки (до 30-60 % нормального рабочего напряжения), что приводит к нарушению электроснабжения всех потребителей данного узла.

Условия устойчивости нагрузки существенно зависят от характеристик узлов нагрузки энергосистемы и от параметров всей электрической системы в целом. Опасность возникновения лавины напряжения возрастает при увеличении суммарной мощности асинхронных двигателей в составе комплексной нагрузки, их загрузки, электрической удаленности узла от генерирующих источников. Нарушение статической устойчивости нагрузки может проявляться как в энергосистемах, содержащих длинные и относительно короткие, но сильно загруженные линии электропередачи, так и в концентрированных энергосистемах, характеризующихся малой удаленностью электрических станций от центров потребления.

_________________

* В тех случаях, когда лавина напряжения может иметь место, она возникает, если напряжение в узле понижается до значения U кр , которое называется критическим.

6.1.2. Расчеты устойчивости нагрузки следует проводить для определения запасов устойчивости в нормальных и послеаварийных режимах, а также проверки устойчивости послеаварийных режимов. Запас устойчивости (KU ) определяется в соответствии с соотношением

, (6.1)

где U 0 - нормальное напряжение.

6.1.3. При выполнении расчетов, связанных с глубокими понижениями напряжения в узлах нагрузки, нужно иметь в виду, что по ряду причин (в частности, из-за того, что применяемые в настоящее время магнитные пускатели самопроизвольно отключаются при напряжении 0,6-0,8 Uном ) снижения напряжения могут вызвать самоотключения потребителей. Сброс нагрузки промышленных предприятий может достигать, по экспериментальным данным, 50 %. Поэтому при выполнении расчетов для действующих энергосистем следует при снижении напряжения на шинах потребителей примерно до 0,7 Uном и ниже учитывать самоотключения, для чего необходимо уменьшать величину двигательной нагрузки на 20¸30 % (ориентировочно).

Поскольку в будущем следует ожидать усовершенствования коммутационной аппаратуры низкого напряжения и улучшения средств защиты и автоматики на промышленных предприятиях, проектные (перспективные) расчеты целесообразно выполнять и без учета самоотключений двигателей.

6.1.4. Для определения критического напряжения и запаса устойчивости нагрузки необходимо осуществлять утяжеление исходного нормального режима. Способы утяжеления режима могут быть различны:

1) снижение ЭДС источников питания при неизменной схеме внешней сети;

2) изменение схемы внешней сети (отключение некоторых элементов), изменение внешнего реактивного сопротивления при ЭДС, равных или отличающихся от ЭДС исходного режима;

3) увеличение активной и реактивной нагрузки узла.

6.1.5. На основании этих расчетов в случае необходимости следует выбирать мероприятия, улучшающие устойчивость нагрузки: регулирование возбуждения синхронных машин, а также отключение части неответственной нагрузки при снижении напряжения в узлах.

Если эти мероприятия не решают задачи, то может быть поставлен вопрос об улучшении характеристик комплексной нагрузки (например, замена части асинхронных двигателей синхронными), а также параметров внешней сети (увеличение мощности питающих трансформаторов, строительство новых линии электропередач в распределительных сетях и т.д.).

6.1.6. При выполнении расчетов устойчивости нагрузки следует учитывать, что неполнота исходных данных (главным образом, в отношении параметров режима двигателей при пониженном напряжении) может решающим образом повлиять на точность расчетов. Если значение критического напряжения оказывается близким к предельно возможному (значение KU »0,25 - ориентировочно), то следует повторить расчеты, уточнив расчетную модель узла нагрузки. Для этого следует рассчитать более подробную схему распределительной сети с более подробным учетом электроприемников. Может также оказаться необходимым учет условий самораскачивания и влияния на устойчивость нагрузки способов стабилизации АРВ станций энергосистемы. При возможности обязательно проводится экспериментальное определение устойчивости нагрузки.

6.1.7. Общий метод исследования статической устойчивости нагрузки. При использовании метода малых колебаний следует учитывать специфику рассматриваемой задачи. Она заключается в том, что при составлении дифференциальных уравнений, описывающих переходный процесс в энергосистеме, выделяются мощные узлы нагрузки, в то время как остальные узлы нагрузки задаются в виде постоянных сопротивлений.

6.1.8. Нагрузки выделенных узлов следует учитывать статическими характеристиками, представляющими зависимости потребляемой мощности от напряжения на шинах узла U , т.е. Рн = f 1 (U ), Qн = f 2 (U ). Синхронные или асинхронные двигатели следует по возможности учитывать в виде отдельных эквивалентных двигателей, подключенных к шинам узла нагрузки.

6.1.9. Уравнения переходных процессов в малых отклонениях для энергосистемы произвольной конфигурации, содержащей n электростанций (представленных эквивалентными генераторами) и m выделенных узлов нагрузки, записываются в следующем виде [Л.1]:

1) Уравнения переходных процессов в эквивалентных генераторах энергосистемы

(6.2)

где i = 1, 2, ..., n ;

Uk - напряжение k -го узла нагрузки;

Ek - ЭДС генератора*;

dik - угол между векторами и (или и );

Wij (p ) - передаточная функция АРВ генератора i по параметру регулирования П ij (см. гл. 3);

р - оператор дифференцирования,

_______________

* Обычно принимают Ek = Е qk , но может быть принято Ek = Е Qk или ; выбор той или иной ЭДС определяется удобством выполнения расчетов и, не влияя на конечные результаты анализа устойчивости, приводит к изменению выражений для частных производных в (6.2) и их численных значений.

2) Уравнения балансов мощностей в узлах нагрузки

; (6.3)

; (6.4)

где , - соответственно активная и реактивная мощности, подтекающие от энергосистемы к узлу i (i = n +1, …, n +m );

Pн i , Qн i - мощности составляющей нагрузки узла i , заданной статическими характеристиками;

Pci , Qci - мощности эквивалентного синхронного двигателя узла нагрузки i ;

;

;

Р aci , Qaci - мощности эквивалентного асинхронного двигателя узла нагрузки i ;

;

,

si - скольжение асинхронного двигателя.

3) Уравнения переходных процессов в эквивалентных двигателях узлов нагрузки.

Синхронные двигатели:

(6.5)

где dci - угол между векторами ЭДС двигателя и напряжения узла;

di - угол вектора относительно синхронной оси (i = n +1, …, n +m ).

Асинхронные двигатели:

. (6.6)

С помощью приведенных уравнений анализ статической устойчивости энергосистемы с учетом характеристик нагрузки можно выполнять любыми известными методами с применением алгебраических или частотных критериев устойчивости.

6.1.10. Анализ статической устойчивости энергосистемы можно существенно упростить, если предположить, что нарушение устойчивости происходит апериодически, без самораскачивания. Последнее обычно имеет место в тех случаях, когда причиной неустойчивости системы является неустойчивость нагрузки, проявляющаяся в виде апериодического процесса - лавины напряжения. В этих случаях условием устойчивости системы является положительность свободного члена характеристического уравнения (an > 0).

В общем случае условие an > 0 является необходимым, но недостаточным условием статической устойчивости и дает несколько завышенные значения пределов устойчивости. Однако погрешность при таком упрощенном подходе будет тем меньше, чем лучше осуществлена стабилизация энергосистемы путем соответствующего выбора структуры и параметров АРВ синхронных машин.

Проведение упрощенных расчетов устойчивости, без учета самораскачивания, позволяет сократить необходимый объем более точных расчетов.

6.1.11. Практические методы расчетов устойчивости нагрузки. Их применение позволяет еще более упростить расчета статической устойчивости нагрузки без снижения и точности по сравнению с расчетом свободного члена характеристического уравнения (см. гл. 3).

Рис. 6.1. Возможные схемы замещения внешней сети при расчетах статической устойчивости нагрузки:

а - общий вид многолучевой звезды; б - простейшая схема; в - двухлучевая схема;

г – многополюсник

6.1.12. Выбор того или иного практического критерия, из которых наиболее распространенными являются

, , (6.7)

следует производить, исходя из соображений простоты и удобства анализа [Л.2]. Эти критерии дают те же результаты, что и расчет an при условии, что энергосистема устойчива при закреплении напряжения в узловой точке (при U = Const).

______________

* DQ - это разность между мощностью, притекающей в узел нагрузки от источника питания Q г (U ), и мощностью, потребляемой в узле нагрузки Q н (U ): DQ = Q г (U ) - Q н (U ).

6.1.13. Анализ статической устойчивости с помощью практически критериев (6.7) для схем, показанных на рис. 6.1, а -в , может выполняться без применения вычислительных или моделирующих устройств и обычно проводится графическим способом в связи с тем, что статические характеристики нагрузок, как правило, задаются таблично или графически. Методика анализа состоит в том, что для ряда значений напряжения в окрестности точки U = U 0 , соответствующей исходному режиму, устойчивость которого исследуется, строится зависимость либо DQ = f (U ), либо Ei = ji (U ),

где i - номер ветви схемы. Угол наклона касательной к этой кривой в точке U = U 0 и определяет условие устойчивости энергосистемы.

6.1.14. При определении зависимости DQ = f (U ) следует рассчитывать Qi = fi (U ), i = 1, 2, …, n , исходя из условия

Ei = Const и , .

6.1.15. Отличие методики расчета Ei = ji (U ) от DQ = f (U ) состоит в том, что появляющийся при изменении U небаланс реактивной мощности (DQ ) относят на генератор i , что и вызывает изменение его ЭДС Ei .

6.1.16. Определение запаса статической устойчивости исследуемого режима энергосистемы при применении практических критериев проводится так же, как и при применении критерия аn >0 т.е. для каждого режима энергосистемы, определяемого выбранным способом подхода энергосистемы к пределу устойчивости, следует заново рассчитывать зависимости Ei = ji (U ) или DQ = f (U ).

6.1.17. Для оценки значения запаса устойчивости может быть применена более простая методика, состоящая в том, что расчет кривой DQ = f (U ) или Ei = ji (U ) соответствующих исходному режиму энергосистемы, продолжается при уменьшении U вплоть до достижения точки экстремума: d DQ / dU = 0 или dEi / dU = 0. Напряжение, соответствующее этой точке, будет минимально допустимым с точки зрения статической устойчивости - критическим напряжением Uкр .

Подход к предельному режиму в этом случае для разных критериев будет различным. При применении критерия d DQ / dU < 0 утяжеление исходного режима энергосистемы состоит в том, что в узел системы подключается дополнительная реактивная нагрузка, равная для каждого значения напряжения узла U = U 0 небалансу реактивной мощности (DQн = DQ ), причем : d DQн / dU = 0 для каждого значения U . При применении критерия dEi / dU > 0 утяжеление исходного режима системы состоит в уменьшении напряжения в узловой точке из-за снижения ЭДС генератора i .

Следует учитывать, что в общем случае значения коэффициента запаса по напряжению KU зависят от применяемого критерия, однако различия обычно не велики.

Задачу определения значения Uкр с помощью указанных критериев можно еще более упростить, полагая, что активная мощность нагрузки, а следовательно, и генераторов энергосистемы, остается постоянной при изменении напряжения в узловой точке. Погрешность от такого упрощения (оцениваемая по значению критического напряжения в узле нагрузки Uкр ) тем меньше, чем меньше регулирующий эффект активной мощности нагрузки по напряжению ¶PU . Как показали проведенные расчеты, при ¶PU = 0,6 (что характерно для узлов промышленной нагрузки), эта погрешность не превышает 2-3 % и обычно вполне допустима. Кроме того упрощенные расчеты дают завышенные значения Uкр .

6.1.18. При расчетах статической устойчивости нагрузки схема эквивалентируется и приводится к одному из видов, показанных на рис. 6.1. Аналитические расчеты устойчивости нагрузки следует проводить для схем, показанных на рис. 6.1, а , б , в . Для более сложных схем (рис. 6.1, г ) расчеты следует выполнять с помощью ЦВМ.

6.1.19. Следует помнить, что эквивалентирование генераторов в аналитических расчетах устойчивости нагрузки (определение критического напряжения на нагрузках) приводит к правильным результатам только в тех случаях, если фазы ЭДС генераторов совпадают или близки между собой. В остальных случаях эквивалентирование приводит к снижению Uкр , т.е. дает завышенные запасы устойчивости. Однако в большинстве случаев эквивалентирование генераторов не приводит к существенному снижению критического напряжения (см. приложение 10).

6.1.20. При нескольких источниках питания определение критического напряжения при снижении ЭДС источников питания проводится аналогично предыдущему критерию dEi / dU > 0 при заданном изменении ЭДС. Например, при поддержании постоянными ЭДС n -1 источников и заданном распределении между ними активных мощностей постепенным снижением ЭДС n -го источника находится минимальное напряжение, при котором существует режим Pн (U ) и Qн (U ). Это напряжение и является критическим для данных условий работы энергосистемы.

6.1.21. Проверка устойчивости узла нагрузки по критерию d DQн / dU < 0 при задании ЭДС источников питания E 1 , ..., Е n и заданном распределении между ними активных мощностей осуществляется путем построения характеристики Qг S (U ) и сопоставления ее с известной характеристикой нагрузки Qн (U ).

Для построения характеристики Qг S (U ) на расчетном столе переменного тока в узле нагрузки устанавливается активный шунт r , соответствующий активной мощности нагрузки Рн (U ) (сопротивление шунта меняется в зависимости от напряжения в узле) и некоторый индуктивный шунт х , значение которого в значительной мере определяет напряжение в узле. Изменяя сопротивление r в зависимости от U для различных значений х , добиваются изменения напряжения в узле в широком диапазоне. Потребление реактивной мощности индуктивным шунтом х в зависимости от U и дает характеристику реактивной мощности, притекающей от всех n генераторов (Qг S ). Пересечение Qг S (U ) и Qн (U ) определяет исследуемый режим, по d DQ /dU определяются условия устойчивости нагрузки.

6.1.22. В случае, когда расчеты статической устойчивости нагрузки ведутся для суммарных статических характеристик узла Pн (U ) и Qн (U ) по практическим критериям, нарушение устойчивости означает нарушение устойчивости узла целиком, без учета отдельных потребителей, хотя во многих случаях нарушение устойчивости отдельных потребителей происходит раньше, чем всего узла нагрузки. Для исследования устойчивости какого-либо элемента он должен быть выделен со своими характеристиками.

6.1.23. При наличии одного источника питания (см. рис. 6.1, б ) расчеты по практическим критериям выполняются аналитически следующим образом.

а) Нагрузка задана статическими характеристикам Pн (U ), Qн (U ). При применении критерия dE / dU > 0 рассчитывается ЭДС энергосистемы в зависимости от напряжения в узле нагрузки

. (6.8)

Критическое напряжение Uкр и критическая ЭДС определяются минимумом этой характеристики (dE / dU = 0). Если целью расчетов является проверка устойчивости режима при изменениях внешнего сопротивления хвн и неизменной ЭДС (E = Const), например при исследованиях устойчивости послеаварийных режимов, то целесообразно проверять устойчивость по критерию d DQ / dU < 0. Для этого в узле нагрузки при выбранном значении хвн и для ряда значений U рассчитывается значение DQ

. (6.9)

Исходный режим соответствует условию DQ = 0. В окрестности рабочей точки определяется знак d DQ / dU ; если d DQ / dU < 0, то режим устойчив; если d DQ / dU > 0 режим неустойчив.

Аналогично выполняется расчет для случая роста нагрузки. Тогда при использовании критерия d DQ / dU < 0 в выражении (6.9) варьируется не значение хвн , а характеристики Рн (U ), Qн (U ). При этом принимается, что при всех значениях U значения Рн и Qн увеличиваются в одно и то же число раз. В простейших расчетах значение Рн принимается неизменным при изменениях напряжения и росте реактивной нагрузки.

Примеры расчетов устойчивости нагрузки приведены в [Л.3].

б) Нагрузка представлена одиночным асинхронным двигателем.

Критическое напряжение одиночного асинхронного двигателя1 , работающего на шины неизменного напряжения, определяется в соответствии с критерием dP / ds [Л.1, 4], как

, (6.10)

где Р - мощность, потребляемая асинхронным двигателем из электросети2 .

_______________

1 В расчетах статической устойчивости предполагается, что значение момента сопротивления на валу двигателя не зависит от частоты вращения. Сопротивление КЗ .

2 В относительных единицах номинальная активная мощность двигателя равна cos jном .

При работе асинхронного двигателя через внешнее сопротивление хвн значение критической ЭДС определяется по формуле

, (6.11)

а критическое напряжение

, (6.12)

в) Нагрузка представлена синхронным двигателем. Критическое напряжение одиночного синхронного двигателя, работающего на шины неизменного напряжения, определяется в соответствии с критерием dP / d d > 0 [Л.1, 4], как

, (6.13)

где для нерегулируемого двигателя Eдв = Eq , xдв = xd ,

для двигателя с АРВ Eдв = E' , xдв = x' d .

При работе синхронного двигателя через внешнее сопротивление хвн значение критической ЭДС системы определяется по формуле

, (6.14)

6.1.24. Определение устойчивости узла нагрузки, имеющего n асинхронных двигателей1 , можно выполнить исходя из того, что двигатели одновременно достигают критического скольжения. При этом значения критических напряжений и ЭДС получаются с запасом.

Если в узле нагрузки подключено несколько асинхронных двигателей, питающихся через внешнее сопротивление от энергосистемы с ЭДС Е , то их устойчивость определяется аналогично устойчивости одиночного двигателя. Для этого рассчитывается эквивалентное сопротивление электросети для каждого двигателя , , …, на основании соотношения

, (6.15)

где , …, - сопротивления двигателей;

- эквивалентная проводимость всех двигателей, подключенных к шинам;

, (6.16)

При расчетах эквивалентного сопротивления в значении сопротивлений двигателя2 подставляются значения критического скольжения sкр .

______________

1 Используются материалы исследований, выполненных И.А. Сыромятниковым.

2 Определение Zi при критическом скольжении дает значения U кр и Екр с запасом, так как на самом деле критическое скольжение при наличии внешнего сопротивления меньше номинального критического скольжения и, кроме того, не все двигатели одновременно имеют критические скольжения.

По известному эквивалентному сопротивлению для каждого двигателя определяются критическое напряжение Uк p и критическая ЭДС Eкр по уравнениям (6.11) и (6.12) в предположении, что все остальные двигатели работают устойчиво.

После определения критических напряжений и ЭДС (Uкр i и Eкр i ) для всех двигателей, они располагаются в порядке уменьшения их критических ЭДС. Пусть для первого двигателя критическая ЭДС равна Екр 1 . При ЭДС выше, чем Екр 1 , все двигатели работают устойчиво. После опрокидывания первого двигателя критическая ЭДС второго и всех остальных увеличивается, так как сопротивление первого двигателя становится (s 1 = 1). Поэтому для каждого i -го двигателя по уравнениям (6.11) и (6.12) критические напряжения и ЭДС определяются при условии, что i -1 двигателей опрокинулись (Uкр. i- 1 > Uкр i ) и их сопротивления ( , , …, ) определяются при s = 1, а двигатели от i -го до n -го еще не нарушили свою устойчивость и их сопротивления определяются при критических скольжениях si = sкр i , …, sn = sкр n . Тем самым для i -го двигателя определяются критические напряжения и ЭДС, при которых сохраняется устойчивая работа двигателей от i -го до n -го, когда произошло опрокидывание i -1 двигателей1 .

______________

1 В действительности часть двигателей вскоре после опрокидывания будет отключена защитой. Это обстоятельство вводит в такой расчет дополнительный запас. (См. также [Л.5]).

Аналогичным образом определяется минимальное напряжение, при котором возможен пуск к двигателей при работающих n двигателях. Тогда при определении , …, принимается s 1 = sкр 1 , …, sn = sкр n , а для , …, принимается sn + 1 = sn + 2 = … = sn = 1.

6.1.25. Для узлов с преобладающей асинхронной нагрузкой и не содержащих источников реактивной мощности значение критического напряжения может быть упрощенно определено на основании эксперимента по косвенным признакам, без опасности возникновения лавины напряжения. Для этого требуется получить статическую характеристику Qн = f 2 (U ) при понижении напряжения до той точки, где значение Qн минимально (обозначим это напряжение Uмин Q ). Опыт прекращается, как только значение Qн при понижении напряжения начинает возрастать.

Для указанной нагрузки критическое напряжение определяется по формуле

, (6.17)

где хвн - эквивалентное сопротивление распределительной сети (от выводов асинхронных двигателей до точки, напряжение в которой не зависит от режима рассматриваемой нагрузки1) .

Значение хвн берется в относительных единицах, в которых Uбаз = Uдв.ном ; .

6.1.26. Устойчивость нагрузки при пуске крупного двигателя. Пуск крупного синхронного или асинхронного двигателя может вызвать существенное понижение напряжения на шинах нагрузки и даже вызвать нарушение статической устойчивости работавших двигателей. Расчет устойчивости нагрузки может быть выполнен указанными выше способами; удобно применение критерия d DQ / dU < 0. Запускаемый двигатель учитывается в виде дополнительной нагрузки, имеющей сопротивление для асинхронных двигателей или для синхронных2 .

_______________

1 Для решения обратной задачи - определения хвн по известным значениям Q мин Q и U кр - выражение (6.17) непригодно, так как не обеспечивает удовлетворительной точности.

2 См. также п.6.2.

6.1.27. Влияние статических конденсаторов на устойчивость нагрузки. При исследовании влияния на статическую устойчивость нагрузки статических конденсаторов, параллельно включаемых в узлах нагрузки, они учитываются изменением реактивной мощности потребителей Q = Qн - U 2 / xc . Расчет устойчивости в этом случае проводится так же, как и без статических конденсаторов.

Кроме того расчет устойчивости можно упрощенно провести по схеме, приведенной на рис. 6.1, б , в которую должны быть введены следующие эквивалентные параметры

, . (6.18)

При рассмотрении влияния конденсаторных батарей (КБ) на устойчивость нагрузки в общем случае следует учитывать, что при увеличении генерируемой ими мощности может потребоваться (из-за повышения напряжения) изменение коэффициентов трансформации понизительных трансформаторов.

Нужно различать три случая:

а) КБ на понизительной подстанции устанавливаются для того, чтобы повысить напряжение до номинального; коэффициенты трансформации остаются неизменными. В этом случае запас по статической устойчивости двигателей увеличится;

б) КБ устанавливаются не для повышения напряжения, а для увеличения коэффициента мощности нагрузки; напряжение в точке установки КБ (шины НН понизительной подстанции) восстанавливается понижением ЭДС ближайших генераторов или компенсаторов. В этом случае запас по статической устойчивости нагрузки снижается;

в) КБ устанавливаются также для повышения коэффициента мощности, но напряжение на шинах НН подстанции восстанавливается изменением коэффициента трансформации понизительных трансформаторов этой подстанции. В этом случае (в зависимости от значения внешнего сопротивления) запас по статической устойчивости двигателей может как повыситься, так и понизиться.

В последнем случае [Л.6] запас по устойчивости двигателей повышается, если сопротивление х 2 от шин ВН подстанции до той точки энергосистемы, напряжение в которой не зависит от режима нагрузки (рис. 6.2), больше, чем сопротивление трансформатора хт ; если хт > х 2 , запас по устойчивости двигателей после включения КБ снижается. (Оба сопротивления, разумеется, должны быть приведены к одной ступени напряжения).

В проектной практике расчеты устойчивости с учетом КБ имеют особое значение тогда, когда от решения вопроса о коэффициентах мощности нагрузки зависит выбор мощности трансформаторов, числа цепей и т.п. Неучет влияния КБ в этом случае может привести к тому, что будут получены существенно заниженные значения критического напряжения и, следовательно, в реальных условиях повысится вероятность возникновения лавины напряжения.

6.2. Динамическая устойчивость нагрузки

6.2.1. При анализе динамической устойчивости нагрузки в общем случае следует рассматривать следующие возмущения:

- пуск крупного двигателя;

- автоматическое повторное включение или переключение источников питания (АПВ и АВР), вызванные КЗ в местной электросети;

- КЗ и АПВ в сети высокого напряжения.

Рис. 6.2. Упрощенная схема питания подстанции с конденсаторной батареей

В расчетах учитывается, что за время перерывов питания или понижений напряжения, вызванных КЗ или другими причинами, двигатели тормозятся. Поэтому при восстановлении напряжения двигателя потребляют ток, существенно больший нормального. Это ведет к понижению напряжения в электрической системе и в свою очередь вызывает уменьшение момента вращения двигателей, как тех, которые испытали перерыв питания, так и других, работавших до этого в нормальных условиях. Если не провести соответствующего расчета и не оценить возможного понижения напряжения на выводах двигателей, то может получиться, что после рассматриваемого возмущения электродвигатели не смогут работать: их частота вращения не восстановится, устойчивость нагрузки нарушится. Самозапуск двигателей должен быть осуществлен за время, допустимое по характеру технологического процесса и по нагреву двигателей. Во время самозапуска двигателей в остальной энергосистеме не должно быть таких снижений напряжения, которые могли бы привести к нарушению нормальной работы.

6.2.2. Мощные нагрузки, вызывающие резкие толчки (электрическая тяга, двигатели прокатных станов и др.) требуют при расчетах режимов определения:

- условий, при которых работа этих толчкообразных нагрузок не приводит к недопустимым колебаниям напряжения на остальных нагрузках, например не приводит к нарушению устойчивости других двигателей;

- устойчивости самих двигателей, работавших с переменным моментом.

6.2.3. Помимо указанного, для узлов нагрузки, подключенных к энергосистеме в электрической близости от центра качаний, при возможности возникновения асинхронного режима, следует проверять устойчивость асинхронных и, главным образом, синхронных двигателей при периодических возмущениях, вызванных асинхронным режимом.

6.2.4. Если для конкретного узла нагрузки известны характеристики по напряжению и частоте, то доля двигательной нагрузки в суммарной нагрузке узла определяется, в первом приближении, по формуле

. (6.19)

При расчетах режима нагрузки для неномидальных значений частоты и напряжения можно в качестве первого приближения полагать регулирующие эффекты по напряжению не зависящими от частоты.

6.2.5. Расчеты пуска и самозапуска асинхронных двигателей. Целью расчетов пуска двигателей является:

- определение времени пуска и допустимости нагрева двигателя при пуске;

- проверка, при необходимости, плавности пуска (например для подъемных кранов), постоянства ускорения и других параметров пуска, существенных для технологического процесса;

- оценка влияния понижения напряжения на выводах других потребителей при пуске достаточно мощных двигателей.

В настоящих Методических указаниях рассматривается только последний вопрос, который наиболее существен в маломощных энергосистемах, а также при питании предприятия по линиям электропередачи с недостаточно высокой пропускной способностью, при недостаточной мощности трансформаторов и пр. Наиболее опасным в этом смысле является прямой пуск короткозамкнутых асинхронных двигателей, обычно составляющих основную часть нагрузки. Большой пусковой ток этих двигателей может вызвать снижение напряжения, что приведет к увеличению скольжения остальных работающих двигателей и росту реактивной мощности, потребляемой двигателями. Последнее может привести к опрокидыванию работающих двигателей и к возникновению лавины напряжения.

6.2.6. Задача определения условий самозапуска группы асинхронных двигателей требует в общем случае расчета скольжения для следующих этапов:

- короткое замыкание;

- перерыв питания (бестоковая пауза при АПВ или АВР). Напряжение равно нулю от t = tкз t =tкз + tпер ;

- послеаварийный режим; напряжение восстанавливается до уровня, который зависит от токов нагрузки, процессов в генераторах и изменений схемы сети.

Задача расчета пусков двигателей (индивидуальных - в нормальных условиях и групповых - в некоторые случаях при ликвидации отказов) является аналогичной с той лишь разницей, что отдельные этапы расчета могут быть исключены.

6.2.7. Расчеты самозапусков и групповых пусков двигателей обычно преследуют цель определения максимального количества двигателей, для которых возможно восстановление нормального режима за допустимое время. Двигатели, самозапуск которых невозможен, должны своевременно отключаться защитой.

6.2.8. Исходные данные для расчетов пуска и самозапуска асинхронных двигателей следующие:

- схема внешней сети, которая приводится к виду, показанному на рис. 6.3, а , б ;

- параметры эквивалентных двигателей (см. приложения 11 и 12);

- статические характеристики по напряжению для прочих потребителей (см. гл. 2).

_______________

1 Одним двигателем могут быть замещены двигатели, которые питаются от одной секции или от секций, находящихся в аналогичных условиях при рассматриваемом возмущении. Следует, однако, избегать эквивалентирования двигателей, имеющих существенно разные зависимости момента сопротивления от частоты вращения (например, поршневые и центробежные компрессоры), а также двигателей, механические постоянные инерции которых различаются более чем вдвое.

6.2.9. Расчет переходного процесса выполняется методом последовательных интервалов. Параметры исходного режима определяются следующим образом:

- схема (см. рис. 6.3) приводится к одному напряжению. Если рассматривается один эквивалентный двигатель, то расчет удобно вести в относительных единицах, принимая для кажущихся мощностей

Sбаз = Sдв.ном .

Независимо от выбора системы единиц для электрического расчета внешней сети, для каждого эквивалентного двигателя вводятся собственные относительные единицы, где Uбаз i = Uдв.ном и Sбаз i = Sдв.ном i , что облегчает расчет скольжений;

- напряжения на шинах потребителей (Uдв ) в исходном режиме считаются заданными;

- по известным значениям Рдв = кз cosjном и Uдв по уравнению П.11.2 (см. приложение 11) в собственных относительных единицах определяются скольжения s для исходного режима;

- по выражению (П.11.3) рассчитываются значения реактивных мощностей, потребляемых двигателями, после чего значения Р и Q нагрузок1 пересчитываются к тем абсолютным или относительном единицам, в которых выражены сопротивления сети ("общим" единицам);

________________

1 На этом же этапе учитываются статические потребители своими характеристиками Рст = f 1 (U ),
Q ст = f 2 (U ).

- рассчитывается ЭДС E (см. рис. 6.3), которая обеспечивает заданное напряжение на шинах потребителей для вычисленных значений активных и реактивных нагрузок.

Таким образом исходный режим, включая начальные скольжения, определен. Далее расчет ведется последовательными интервалами времени с шагом Dt так, чтобы моменты коммутаций совпадали с границами шагов. На каждом шаге выполняются следующие операции:

- по известным значениям скольжений рассчитываются параметры схем замещения двигателей (рис. 6.4) и приводятся к «общим» единицам;

- исходя из значения Е , делается электрический расчет схемы для данного режима и определяются значения Uдв . В режиме паузы Uдв = 0;

- до формуле (П.11.2) вычисляются для всех эквивалентных двигателей значения Pдв (в относительных единицах);

- по формуле (П.11.5) вычисляется для известных значений s значения моментов сопротивления;

- определяются скольжения s к концу данного, j -го интервала в предположении, что значения Pдв и Мсопр не изменяются

sj = sj -1 + Ds ; . (6.20)

Определяется текущее время к концу данного интервала

tj = tj -1 + Dt .

Далее производится расчет для следующего интервала времени.

Рис. 6.3. Схема сети, внешней по отношению к рассматриваемой нагрузке:

а - общий случай; б – простейшая схема

Рис. 6.4. Г-образная схема замещения асинхронного двигателя

6.2.10. В ряде случаев расчет упрощается. Если в аварийном режиме Uдв = 0, а моментно-скоростная характеристика приводимого механизма выражается квадратичной параболой

Мсопр = кз [mст + (1 - mст ) (1 - s )2 ] cos jном ; (6.21)

то могут быть использованы кривые выбега, показанные на рис. 6.5, а при mст = 1 и различных значениях остаточного напряжения - кривые на рис. 6.6 [Л.4].

6.2.11. Следует иметь в виду, что при отключении от сети группы асинхронных двигателей (без предшествующего близкого КЗ) электромагнитное поле двигателей исчезает не мгновенно, а с некоторой постоянной времени, достигающей иногда 1 с и более. Кривые затухания напряжения для некоторых условий приведены в качестве примера на рис. 6.71 . Из-за наличия остаточного напряжения некоторое время сохраняются взаимные асинхронные моменты двигателей и скольжения двигателей в процессе выбега поддерживаются почти равными, что в приведенной методике расчета не учитывается. За время такого выбега tгр (примерно до Uост = 0,25 Uном ).

______________

1 Эффекты, связанные с групповым выбегом при отключении асинхронных двигателей от источника питания (без КЗ), можно не учитывать для мелких двигателей и в тех случаях, когда в составе рассматриваемой нагрузки имеются статические потребители.

; (6.22)

значение tгр определяется по экспериментальной зависимости остаточного напряжения на двигателях от времени, полученной либо для данной, либо для аналогичной в смысле значения группы двигателей.

Если tгр ³ tпер , то к моменту включения в сеть

; (6.23)

Рис. 6.5. Кривые выбега двигателя при остаточном напряжении равном нулю

Рис. 6.6. Кривые выбега двигателя при различных значениях остаточного напряжения и при постоянном моменте сопротивления:

а - кз = 1,0; б - кз = 0,75

Рис. 6.7. Кривые затухания напряжения на шинах двигателей после их отключения от сети:

1 - группа асинхронных двигателей; 2 - асинхронный и синхронный двигатели; 3 - то же, но синхронный двигатель снабжен АРВ

Если tгр < tпер , то

Dsпер = Dsгр + Dsинд , (6.24)

где Dsинд - изменение скольжения или при выбеге каждого из двигателей в отдельности (Uост < 0,25) за время Dt = tпер - tгр - определяется как указано выше.

Расчеты пусков двигателей отличаются от описанных тем, что для запускаемых двигателей sнач = 1. Эквивалентная ЭДС Е рассчитывается в предположении, что Uдв = 1, либо перед пуском, либо по окончании пуска, в зависимости от конкретных условий.

6.2.12. Во всех расчетах, связанных с глубокими понижениями напряжения на выводах двигателей, обязателен учет того обстоятельства, что при U < (0,6¸0,8) Uном отпадают контакты магнитных пускателей, что может привести к самоотключению значительной части двигателей низкого напряжения. Отключения двигателей могут иметь место также и от защит минимального напряжения (с соответствующими выдержками времени).

6.2.13. Динамическая устойчивость синхронных двигателей. Расчеты динамической устойчивости синхронных двигателей в общем случае следует выполнять так же, как и для генераторов (см. гл. 4). При рассмотрении вопросов динамической устойчивости двигателей может быть принято Мсопр = Const.

6.2.14. Выбор уравнений синхронных двигателей осуществляется так же, как и для генераторов. Могут быть использованы уравнения Парка-Горева или, если асинхронный режим не рассматривается, то может быть принято допущение о постоянстве ЭДС Е' .

6.2.15. Вели рассматриваемые двигатели имеют АРВ, то последние учитываются соответствующими уравнениями. Релейная форсировка возбуждения учитывается упрощенно: кратностью форсировки и постоянной времени возбудителя.

6.2.16. Асинхронные двигатели целесообразно вводить в расчет их схемой замещения и уравнением движения. Статические потребители в большинстве случаев могут быть представлены постоянными сопротивлениями.

6.2.17. Пуск и самозапуск синхронного двигателя. При наличии в составе нагрузки синхронных двигателей постоянная времени затухания напряжения при перерыве питания (без предшествующего КЗ) может достигать 5 с и более. В таких случаях выбег можно рассчитывать по (6.22).

6.2.18. Расчеты процесса самозапуска, а также пуска синхронных двигателей выполняются аналогично описанному для асинхронных двигателей. Асинхронный момент синхронного двигателя1 может быть вычислен так же, как и для генератора (см. гл. 5). Напряжение на выводах синхронного двигателя в процессе его самозапуска может быть рассчитано при введении в расчетную схему пускового сопротивления . (Существенные уточнения дает только решение уравнений Парка-Горева). Расчет электромагнитной мощности по формуле асинхронного момента дает достаточно точные результаты, если возбуждение отсутствует.

_______________

1 При расчете асинхронного момента учитывается, в соответствующих случаях, увеличение реактивных сопротивлений при непрямом пуске двигателя и активного сопротивления цепи возбуждения, если обмотка ротора замкнута на гасительное сопротивление.

6.2.19. При наличии возбуждения следует учитывать существенные колебания тока статора и колебания напряжения на выводах двигателя, из-за чего возрастают потери в статоре двигателя (иногда более чем на 20%) и уменьшается средний асинхронный момент. В качестве одной из основных мер облегчения самозапуска следует рассматривать гашение поля двигателя при перерывах питания.

6.2.20. Если рассчитывается самозапуск или пуск одиночного двигателя, то достаточно сопоставить асинхронную характеристику при вычисленном значении Uдв с моментно-скоростной характеристикой приводимого механизма Мсопр = f (s )* и найти скольжение sуст , которое установится в конце самозапуска. Если в переходном процессе участвует несколько двигателей, в том числе асинхронных, изменение частоты которых может существенно повлиять на уровни напряжения, то расчет ведется методом последовательных интервалов, как описано выше, вплоть до скольжения sуст .

_____________

* В моменте сопротивления Мсопр при расчете самозапуска синхронных двигателей следует учесть тормозной момент двигателя

,

где r ст - сопротивление в цепи статора.

6.2.21. Возможность ресинхронизации синхронного двигателя определяется сравнением скольжения, которое может установиться после окончания самозапуска (sуст ) со скольжением втягивания (sвт ). Ресинхронизация обеспечивается (при наихудших условиях), если

, (6.25)

где М - максимальный синхронный момент двигателя по отношению к источнику питания с учетом значения Е и внешнего сопротивления (см. гл. 5), отн. ед.;

tJ - постоянная инерции двигателя, с;

Iв - ток возбуждения, зависящий от системы регулирования возбуждения.

Из формулы (6.25) следует, что при форсированном возбуждении ресинхронизация облегчается. Для облегчения как ресинхронизации, так и самозапуска, используют также (при возможности) временное снижение механического момента сопротивления.

6.3. Устойчивость двигателей при асинхронном режиме в энергосистеме

6.3.1. Если рассматриваемый узел нагрузки питается от точки энергосистемы, расположенной в электрической близости от центра качаний, то возникающие при асинхронном режиме периодические колебания напряжения и частоты могут явиться причиной нарушения устойчивости как синхронных, так и асинхронных двигателей.

Целесообразно рассматривать схему, в которой две части энергосистемы связаны через сопротивление х = х 1 + х 2 . За сопротивлением х 1 от первого генератора расположен узел нагрузки (рис. 6.8). Электродвижущие силы обоих генераторов могут быть представлены постоянными по модулю значениями . Векторы и вращаются с относительным скольжением s , соответствующим разности частот в асинхронно идущих частях энергосистемы. Напряжение в узле нагрузки (если сопротивление узла велико по сравнению с сопротивлением между энергосистемами) определяется как

; (6.26)

фаза напряжения в узле изменяется по закону

.

Рис. 6.8. Схема для расчета условий питания нагрузки при асинхронном режиме в энергосистеме

6.3.2. Устойчивость двигателей в условиях асинхронного режима в энергосистеме в общем случае следует проверять как при возникновении асинхронного хода, так и при установившемся асинхронном ходе.

6.3.3. Переходный процесс, обусловленный возникновением асинхронного режима в энергосистеме, может представить опасность главным образом для синхронных двигателей при следующих условиях:

а) если асинхронный режим возникает в результате несинхронного включения (НАПВ или включение при установившейся разности частот);

б) если до несинхронного включения нагрузка питалась со стороны энергосистемы 1 и если x 1 > x 2 (см. рис. 6.8). Тогда при включении энергосистем в противофазе фаза напряжения в узле нагрузки может изменяться скачком на 180° (см. векторную диаграмму на рис. 6.9). В этом случае двигатель оказывается в генераторном режиме, что обычно вызывает нарушение его устойчивости.

6.3.4. Во время асинхронного хода между энергосистемами 1 и 2 может произойти нарушение устойчивости как синхронных, так и асинхронных двигателей вследствие понижения среднего уровня напряжения, а также (для синхронных двигателей) в результате раскачивания при резонансе.

6.3.5. Для проверки устойчивости двигателей в указанных режимах схема энергосистемы, по отношению к рассматриваемому узлу нагрузки, приводится к виду, показанному на рис. 6.8. Определяются возможные случаи несинхронных включений. Если возможен случай, показанный на рис. 6.9, б , то делается вывод о том, что имеется вероятность1 нарушения устойчивости синхронных двигателей. На рис. 6.10 приведена достаточно характерная кривая вероятности сохранения устойчивости синхронным двигателем, построенная при условии, что включения с любыми углами равновероятны. Ресинхронизация таких двигателей наступает обычно по окончании асинхронного хода и проверяется по формуле (6.25).

_______________

1 Вероятность нарушения устойчивости определяется вероятностью включения с углами, близкими к 180°, и мало зависит от параметров двигателя и параметров асинхронного режима.

Рис. 6.9. Векторные диаграммы для случая включения энергосистемы 2 при x 1 > x 2 :

а - до включения; б - в момент несинхронного включения

Рис. 6.10. Пример вероятности сохранения динамической устойчивости синхронного двигателя при несинхронном включении в энергосистеме

6.3.6. Для установившегося асинхронного режима при допущении, что ЭДС энергосистем 1 и 2 равны единице, определяется глубина периодических понижений напряжения

. (6.27)

Если

, (6.28)

то устойчивость асинхронного двигателя сохраняется при любой разности частот между энергосистемами. Если

, (6.29)

то устойчивость нарушается всегда.

Если

, (6.30)

то устойчивость асинхронных двигателей сохраняется в некотором диапазоне разности частот между энергосистемами и постоянных инерции двигателей; определение этого диапазона следует провести с помощью ЦВМ.

6.3.7. Условия устойчивости синхронных двигателей существенно зависят от резонансных явлений и поэтому для оценки этих условий требуются расчеты по уравнениям Парка-Горева с помощью вычислительных средств. Такие расчеты позволяют найти пределы устойчивости асинхронных и синхронных двигателей при асинхронном режиме в энергосистеме и определить такую продолжительность асинхронного режима, при котором не успевает произойти нарушение устойчивости.

6.3.8. Если схема энергосистемы такова, что при асинхронном режиме нарушается устойчивость ответственных потребителей, а мероприятия, повышающие устойчивость нагрузки (АРВ двигателей, отключение части нагрузки и т.д.) оказываются неэффективными, то следует рассмотреть вопрос об ограничении продолжительности асинхронного режима или об отказе от НАПВ.

Глава 7. УСТОЙЧИВОСТЬ СЛАБЫХ МЕЖСИСТЕМНЫХ СВЯЗЕЙ

7.1. Общие указания

7.1.1. При расчетах режимов линий электропередач, используемых в качестве межсистемных связей, следует учитывать нестабильность передаваемой мощности из-за случайных колебаний нагрузки в соединяемых энергосистемах и значительные изменения среднего значения обменной мощности при непредвиденных изменениях баланса мощности в соединяемых энергосистемах.

Имеющие случайный характер колебания обменной мощности заставляют выбирать расчетную (плановую) нагрузку межсистемных связей с больший запасом по статической устойчивости, чем при стабильной передаваемой мощности. Эти колебания зависят от мощности соединяемых энергосистем и сказываются на передаваемой мощности в тем большей степени, чем меньше отношение предела по статической устойчивости межсистемной связи к мощности меньшей из соединяемых энергосистем, т.е. чем более "слабой" является межсистемная связь1 . Для слабых межсистемных связей нерегулярные колебания оказывают значительное влияние на режим работы связей и существенно ограничивают использование их пропускной способности.

________________

1 В [Л.7] к слабым связям отнесены связи, для которых отношение предела по статической устойчивости к мощности меньшей из соединяемых энергосистем не превышает 0,1-0,15. Эти значения могут быть приняты для энергосистем относительно небольшой мощности.

7.1.2. Допустимо полагать, что с ростом мощности энергосистемы абсолютные величины нерегулярных колебаний нагрузки возрастают примерно пропорционально корню квадратному из суммарной нагрузки энергосистем, а относительные величины нерегулярных колебаний (отнесенные к мощности энергосистемы) соответственно уменьшаются. В общем случае слабыми рекомендуется считать связи, для которых отношение предела по статической устойчивости к суммарной мощности меньшей из соединенных энергосистем не превышает: 0,15-0,1 - при мощности энергосистемы до 3000 МВт; 0,1-0,08 - при 3000-10000 МВт; 0,08-0,05 - при 10000-30000 МВт; 0,05-0,03 - при 30000-60000 МВт.

Изменения обменной мощности приводят к необходимости оперативной корректировки режима для поддержания среднего значения обменной мощности на заданном уровне и для предотвращения опасных для устойчивости перегрузок межсистемной связи.

7.1.3. По способу регулирования передаваемой мощности следует различать связи:

а) с ручным регулированием, по которым средние значения передаваемой мощности периодически корректируются оперативным персоналом;

б) с автоматическим регулированием (ограничением) передаваемой мощности.

7.1.4. При определении запасов устойчивости межсистемных связей должна учитываться нестабильность передаваемой мощности и отклонения этой мощности от заданного (планового) значения, которые имеются при ручном регулировании и не могут быть полностью устранены при автоматическом регулировании.

7.1.5. Следует учитывать структуру межсистемных связей. Межсистемная связь может состоять как из одиночной линии электропередачи, так и из ряда линий, в том числе с промежуточными нагрузками и электростанциями относительно небольшой мощности. Межсистемная связь без промежуточных электростанций называется межсистемной связью простой структуры, при наличии таких электростанций - межсистемной связью сложной структуры.

Объединенные энергосистемы с несколькими межсистемными связями могут иметь различную конфигурацию. Из всей совокупности различных схем можно выделить ряд наиболее распространенных, приведенных на рис. 7.1.

7.1.6. В тех случаях, когда несколько концентрированных энергосистем соединяются слабыми связями, следует различать независимые и зависимые слабые связи [Л.8]. Слабые связи можно считать независимыми, если каждая из них соединяет только две энергосистемы, и число слабых связей на единицу меньше, чем число соединяемых энергосистем. В противном случае слабые связи являются зависимыми.

Если слабые связи независимы, то взаимные мощности между энергосистемами, непосредственно между собой не соединенными, имеют значения на 1-2 порядка меньше, чем взаимные мощности между энергосистемами, непосредственно соединенными слабыми связями. Такое различие взаимных мощностей объясняется шунтирующим действием промежуточных энергосистем. Примером независимых слабых связей могут служить связи в схемах, представленных на рис. 7.1, а , б , г . Примеры схем с зависимыми слабыми связями показаны на рис. 7.1, в , д .

7.1.7. Наличие концевых энергосистем, мощность которых значительно больше, чем предел устойчивости и максимум передаваемой мощности по связи, вносит ряд особенностей в определение статической и динамической устойчивости, асинхронных режимов и условий ресинхронизации межсистемных линий электропередач.

Рис. 7.1. Характерные структуры энергосистем:

а - цепная; б - многолучевая звезда; в - кольцевая; г , д - различные сочетания

7.2. Особенности расчета статической устойчивости

7.2.1. Для выполнения расчетов статической устойчивости схема межсистемной связи простой структуры должна быть задана реактивными и активными сопротивлениями элементов, входящих в состав связи (линий электропередач и трансформаторов), и величинами отборов мощности. В случае межсистемной связи сложной структуры должны быть заданы также параметры эквивалента генераторов, подключенных в промежуточных точках связи.

7.2.2. В расчетной схеме генераторы, присоединенные в промежуточных точках, замещаются неизменными ЭДС за своими переходными реактивными сопротивлениями. Относительно небольшие (сравнительно с пропускной способностью связи) промежуточные нагрузки в приближенных расчетах могут быть замещены постоянными сопротивлениями. При больших отборах мощности и при проведении уточненных расчетов должны быть учтены статические характеристики нагрузок.

Соединяемые (концевые) энергосистемы замещаются эквивалентными реактивными сопротивлениями КЗ от ЭДС энергосистемы до точек примыкания связи. Неизменные ЭДС за этими реактивными сопротивлениями определяются расчетом исходного режима по напряжению в точке примыкания связи и передаваемой (принимаемой) активной и реактивной мощности.

7.2.3. В тех случаях, когда промежуточные нагрузки замещаются постоянными сопротивлениями, предельная мощность рассчитывается по формулам

(7.1)

для передающего конца и

(7.2)

для приемного конца. Формулы записаны для положительного направления мощности (пере дача из энергосистемы А в энергосистему Б).

7.2.4. Если механическая инерция (или приближенно мощность) энергосистемы А значительно меньше, чем энергосистемы Б, то предел по статической устойчивости совпадает с максимумом мощности в начале связи по статической характеристике зависимости этой мощности от угла по электропередаче. Предельный угол по электропередаче при этом равен 90°+aАБ . При обратном соотношении инерции (мощностей) нарушение статической устойчивости наступает при угле 90° - aАБ , когда достигает максимума мощность в конце связи.

При соизмеримых значениях мощностей энергосистем, предельный угол может быть приближенно определен по формуле

, (7.3)

где K - отношение мощности меньшей энергосистемы А к мощности большей энергосистемы Б.

7.2.5. В случае необходимости учета статических характеристик промежуточных нагрузок, а также для межсистемных связей сложной структуры, расчет предельных по устойчивости режимов производится обычно с помощью ЦВМ.

7.2.6. Установившиеся режимы и статические угловые характеристики мощности для сравнительно несложных схем слабых связей могут быть определены расчетом "вручную". Простейший метод расчета заключается в следующем: проводится расчет нормального исходного режима, определяются параметры режима по концам связи РА , РБ , UA , UБ , ЭДС за реактивными сопротивлениями концевых энергосистем (ЕА , ЕБ ) и напряжения в точках присоединения промежуточных нагрузок. Далее (если расчет ведется от приемного конца связи) для каждого нового (большего) значения РБ при неизменной ЭДС ЕБ подбирается такое значение QБ , чтобы, ведя расчет по участкам с учетом характеристик промежуточных нагрузок по напряжению, получить на приемном конце значение ЕА , соответствующее исходному режиму.

7.2.7. При определении предела устойчивости на статической модели или по полученной аналитически статической угловой характеристике мощности следует иметь в виду, что предел устойчивости слабой связи обычно достигается при значении угла, превышающем угол, соответствующий максимуму мощности на приемном конце линии электропередачи. При соизмеримых мощностях концевых энергосистем предельным по устойчивости с небольшим запасом можно считать режим, в котором достигается максимум мощности по приемному концу линии электропередачи.

7.2.8. При значительном изменении промежуточных нагрузок (как это имеет место, например при наличии электротяги) предельная мощность на приемном конце изменяется в широких пределах, а соответствующая предельному режиму мощность на передающем конце изменяется значительно меньше. Вследствие этого задавать предельный режим и запас устойчивости целесообразно по передающему концу линии электропередачи.

7.2.9. В тех случаях, когда не производится специальный расчет надежности, запас статической устойчивости в нормальном режиме определяется в соответствии с [JI.7] по формуле

, (7.4)

где Рпр - предел по статической устойчивости;

кр - коэффициент запаса по статической устойчивости, который должен быть не менее 20% для нормального режима и 8% для послеаварийного режима;

- передаваемая мощность (среднее значение);

DР - увеличение передаваемой мощности, из-за ее нерегулярных колебаний, вызванных колебаниями нагрузки и частоты в соединяемых энергосистемах.

7.2.10. При отсутствии достоверных данных по значениям нерегулярных колебаний мощности межсистемных связей в [JI.7] рекомендовано (при отсутствии автоматического регулирования) принимать значение DР равным 2% суммарной мощности генераторов меньшей из соединяемых энергосистем.

Эта рекомендация была основана на опыте эксплуатации регулируемых вручную межсистемных связей, соединяющих энергосистемы средней мощности - порядка 4-6 тыс. МВт. Анализ нерегулярных колебаний мощности в условиях эксплуатация показывает, что для более мощных энергосистем, даже при ручном регулировании, значение DР может быть принято меньше 2%.

7.2.11. При наличии экспериментальных данных по статистическим характеристикам колебаний обменной мощности или колебаний частоты в соединяемых энергосистемах величину запаса статической устойчивости целесообразно определять расчетом надежности работы межсистемной связи (см. п. 7.6).

7.2.12. По условиям надежности значение DР рекомендуется выбирать такое, чтобы при нормированном запасе по статической устойчивости кр = 20%, нарушения статической устойчивости происходили бы не чаще одного раза в год при условии, что среднее значение передаваемой мощности корректируется персоналам не реже, чем один раз в 20-60 мин.

При отсутствии исходных данных, необходимых для расчета надежности, можно принимать для предварительной оценки следующие значения DР в процентах от мощности меньшей из соединяемых энергосистем: для энергосистем мощностью до 3000 МВт DР = 2,5%; 3000-6000 МВт DР = 2,5-2%; 6000-10000 МВт DР = 2-1,5%; 10000-30000 DР = 1,5-1%; 30000-60000 DР = 1-0,7%.

Эти значения соответствуют приближенной зависимости

, (7.5)

где Рн - суммарная нагрузка энергосистемы, МВт*.

________________

* В тех случаях, когда внутренние связи в энергосистемах (по соотношению предела статической устойчивости к мощности меньшей из соединяемых энергосистем) являются слабыми, определение дополнительного запаса статической устойчивости этих внутренних связей может производиться подобно тому, как это рекомендовано для межсистемных связей.

Определяемые по формуле (7.5) значения DР приблизительно равны утроенному среднеквадратичному отклонению обменной мощности от среднего значения на интервале усреднения 20¸60 мин, определяемом частотой вмешательства персонала, корректирующего среднее значение обменной мощности. Если имеется автоматическое регулирование (ограничение) обменной мощности, то значение DР снижается в соответствии с характеристиками регулирования.

7.2.13. Автоматические системы регулирования (ограничители) обменной мощности способны поддерживать на допустимом пределе (с небольшими отклонениями) среднее значение обменной мощности и подавлять нерегулярные колебания, имеющие длительность порядка нескольких минут. Это дает возможность при наличии соответствующих автоматических систем регулирования снижать значение DР при обеспечении того же уровня надежности работы межсистемной связи.

Как показывает опыт эксплуатации, существующие автоматические системы регулирования (ограничения) обменной мощности позволяют уменьшить значение дополнительного запаса устойчивости DР примерно в 2-2,5 раза по сравнению со значениями, указанными для регулирования "вручную", за счет поддержания постоянным среднего значения перетока и некоторого подавления нерегулярных колебаний с периодами 10 мин и более.

7.2.14. Для нескольких энергосистем, соединяемых независимыми слабыми связями, предел устойчивости каждой из них практически не зависит от мощности, передаваемой по соседней слабой связи, поэтому расчеты статической устойчивости выполняются независимо для каждой слабой связи по формулам (7.1) - (7.2). Значения DР определяются по сумме мощностей меньшей части энергообъединения по сторонам рассматриваемого сечения.

7.2.15. Для нескольких энергосистем, соединяемых зависимыми слабыми связями, предел устойчивости по каждой из связей зависит от мощности, передаваемой по соседним связям. В общем случае определение предела по статической устойчивости производится с использованием метода малых колебаний: аналитически для простейших схем или на аналоговых или цифровых вычислительных машинах для более сложных схем.

7.3. Особенности расчета динамической устойчивости

7.3.1. Причинами нарушения динамической устойчивости межсистемных связей могут быть:

- короткие замыкания;

- аварийные небалансы мощности в соединяемых энергосистемах (набросы нагрузки, отключения генераторной мощности);

- асинхронные режимы по соседним линиям электропередачи.

7.3.2. В качестве расчетных для проверки динамической устойчивости рассматриваются КЗ по концам межсистемной связи, а при сложной структуре связей - также и в точках примыкания промежуточных электростанций. Расчет динамической устойчивости межсистемных связей производится с использованием обычных методов (см. гл. 4).

При коротких замыканиях на слабой связи обычно можно считать, что нагрузки в соединяемых этой связью энергосистемах не изменяются. Возможность нарушения динамической устойчивости слабых связей в результате КЗ невелика, так как по этим линиям электропередачи передается небольшая часть мощности соединяемых энергосистем.

7.3.3. Динамическую устойчивость при внезапном изменении мощности в одной из соединяемых энергосистем следует рассматривать с учетом зависимости мощности от частоты для соединяемых энергосистем.

7.3.4. Приближенно можно принимать, что динамическая устойчивость обеспечивается, если, во-первых, обеспечивается динамическая устойчивость в первом цикле качаний при условии постоянства мощности турбин и, во-вторых, обеспечивается статическая апериодическая устойчивость послеаварийного режима с учетом частотных характеристик энергосистем. Для простых случаев (две энергосистемы соизмеримой мощности) могут быть использованы следующие приближенные критерии. Для динамической устойчивости в первом цикле качаний

(7.6)

где

(7.7)

РгА , РгБ - взаимная мощность передающего и приемного концов связи в доаварийном режиме;

t JA , t - средневзвешенные постоянные инерции концевых энергосистем;

- значение угла по электропередаче в доаварийном режиме;

aАБ - угол, дополнительный к углу взаимного сопротивления;

РнбА , РнбБ - значения аварийных выбросов мощности в концевых энергосистемах (положительное значение соответствует увеличению генераторной мощности).

Для статической устойчивости в послеаварийном режиме

, (7.8)

КсА , КсБ - коэффициенты крутизны статических частотных характеристик соединяемых энергосистем (отн.ед.);

Приведенные выше величины (Рг , tг , Рнб , Кс ) отнесены к единой базисной мощности.

7.3.5. Расчеты следует выполнять для случаев аварийных снижений генераторной мощности в приемной энергосистеме и аварийного увеличения избытка мощности в передающей энергосистеме.

Если одинаковы постоянные инерции и коэффициенты крутизны статических частотных характеристик, приведенные к номинальной мощности каждой из энергосистем, то может быть использована более простая приближенная формула, полученная так же, как аналогичная формула в [Л.9],

, (7.9)

где DРАмакс - максимально допустимое значение наброса мощности в энергосистеме А.

7.3.6. При определении динамической устойчивости расчетное значение перетока должно быть несколько увеличено по сравнению со средним плановым значением для учета влияния нерегулярных отклонений перетока.

7.4. Особенности расчетов ресинхронизации

7.4.1. Условия ресинхронизации слабых связей во многих случаях весьма благоприятны. Ресинхронизация обеспечивается после нарушения динамической устойчивости или несинхронного АПВ при всех режимах, вплоть до близких к пределу устойчивости. Для двух и трех энергосистем можно пользоваться приближенными аналитическими методами, в более сложных случаях - моделированием или расчетом на ЦВМ.

7.4.2. При расчете ресинхронизации слабых связей асинхронный момент не учитывается ввиду его малости по сравнению с остальными демпфирующими моментами (изменением нагрузки и моментов турбин при изменении частоты).

7.4.3. Если две энергосистемы соединяются слабой связью без промежуточных нагрузок с малым активным сопротивлением линии или же с промежуточными нагрузками, но при малых значениях aАБ , предельная по условиям ресинхронизации мощность определяется по следующей формуле [Л.10]

. (7.10)

Расчет устойчивости одной из слабых связей (соединяющей энергосистемы А и Б) при асинхронном режиме по соседней слабой связи (соединяющий энергосистемы Б и В) производится следующим образом:

а) по формуле (7.6) или (7.9) определяется устойчивость одной связи при набросе мощности, вызванном нарушением устойчивости другой связи;

б) если разность частот, при которой ресинхронизируется энергосистема В с остальными двумя энергосистемами, меньше, чем частота собственных колебаний связи, соединяющей энергосистемы А и Б, то определяется максимальное отклонение угла DdАБмакс при резонансе собственных и вынужденных колебаний

. (7.11)

где кусп – коэффициент, определяемый зависимостью нагрузки от частоты и регуляторами скорости турбин. Обычно кусп = 4¸8*.

______________

* Формула (7.11) получена приравниванием энергии, получаемой от энергосистемы В за каждый период асинхронного хода, к той энергии, которая затрачивается на демпфирование при синхронных качаниях энергосистем А и Б [Л.11].

Затем по кривой, показанной на рис. 7.2, определяется снижение предельной мощности , передаваемой по слабой связи, соединяющей энергосистемы А и Б.

Рис. 7.2. Кривая для расчета ресинхронизации по слабой связи

7.4.4. В тех случаях, когда есть промежуточные нагрузки или нельзя пренебречь активными сопротивлениями линий электропередачи, удобнее определять предельный угол исходного режима, при котором обеспечивается ресинхронизация [Л.10]. Формула для определения этого угла имеет следующий вид

(7.12)

7.5. Особенности расчетов устойчивости с помощью АВМ

7.5.1. Расчеты устойчивости слабых связей на АВМ могут выполняться для определения:

- статической устойчивости в объединенных энергосистемах с зависимыми слабыми связями (т.е. когда число слабых связей равно или больше числа энергосистем);

- динамической устойчивости (в том числе и характера переходного процесса) при отключении части нагрузки или генераторов в одной из энергосистем, затяжном КЗ, отключении одной из слабых связей или при ее асинхронном режиме;

- взаимного влияния процессов, происходящих в одной части энергообъединения на работу других его частей;

- результирующей устойчивости и асинхронных режимов (в том числе и характера переходного процесса) при несинхронном АПВ и нарушений динамической устойчивости;

- эффективности различных автоматических устройств, предназначенных для повышения устойчивости слабых связей.

7.5.2. Для расчета устойчивости слабых связей допустимо моделирование схемы из эквивалентных генераторов по уравнениям движения. Число эквивалентных генераторов должно быть равно числу концентрированных энергосистем, соединяемых слабыми связями.

При моделировании уравнений движения мощно учитывать только те взаимные мощности, которые создаются слабыми связями, соединяющими данные соседние концентрированные энергосистемы. В тех случаях, когда остальные взаимные мощности по крайней мере на порядок меньше, пренебрежение ими практически не влияет на результаты расчета.

7.5.3. Регуляторы скорости эквивалентных агрегатов можно моделировать по наиболее простому уравнению. В ряде случаев переходные процессы на слабых связях происходят настолько медленно, что можно не учитывать инерцию регуляторов скорости.

7.6. Определение надежности режима работы слабых межсистемных связей и методика выбора запасов устойчивости

7.6.1. Надежностью режима работы межсистемной связи называется ее способность обеспечивать продолжительную параллельную работу соединяемых энергосистем без нарушений устойчивости. Одним из существенных факторов, способных оказывать влияние на надежность режима параллельной работы энергосистем, соединяемых слабыми связями, являются превышения предела устойчивости линии электропередачи при нерегулярных колебаниях обменной мощности [Л.8, 9]. Эти превышения и вызываемые ими нарушения синхронизма на слабых связях носят случайный характер. Поэтому задачу оценки надежности режима работы слабых связей в условиях нерегулярных колебаний обменной мощности следует рассматривать как вероятностную*.

________________

* В [Л.12, 13] для решения данной задачи предложено использовать элементы теории случайных процессов. Тем самым задача оценки показателей надежности режима работы слабой связи в условиях нерегулярных колебаний обменной мощности и задача экспериментальной оценки статистических характеристик этих колебаний получили возможность количественного решения.

7.6.2. В качестве основного показателя надежности [Л.12, 13] используется средняя продолжительность безотказной работы - среднестатистическое значение промежутка времени между последовательно возникающими нарушениями устойчивости (отказами в нормальном режиме слабой связи).

7.6.3. Требования к надежности должны основываться на минизации расчетных затрат, т.е. сопоставлении затрат на повышение надежности с достигаемым снижением народнохозяйственного ущерба, вызываемого отказами (нарушениями устойчивости) межсистемной связи. В настоящее время вследствие отсутствия достоверных данных о величине ущерба от нарушений устойчивости такой подход к определению надежности слабых связей неосуществим. Можно считать надежность достаточной, если средняя продолжительность безотказной работы межсистемной слабой связи при плановом потоке мощности составляет не менее одного года*. Для связей, нарушение работы которых не представляет опасности для соединяемых энергосистем, расчетная продолжительность безотказной работы может быть снижена.

_____________

* Имеются в виду отказы, вызванные нерегулярными колебаниями обменной мощности.

7.6.4. С учетом требований надежности коэффициент запаса по статической устойчивости межсистемной связи должен определяться такой величиной, которая отвечала бы определенному уровню надежности. Надежность определяется относительной величиной отстройки среднего значения передаваемой мощности от предела Рпр

, (7.13)

где s - среднеквадратическое отклонение нерегулярных колебаний мощности.

7.6.5. Рекомендуются две методики вероятностной оценки надежности режима слабой связи в условиях случайных колебаний обменной мощности: методика НИИПТ [Л.14] и методика ВНИИЭ [Л.15]. Эти методики различаются принимаемой моделью процесса нерегулярных колебаний обменной мощности: в [Л.14] этот процесс моделируется марковским стационарным процессом с нормальным распределением вероятности, а в [Л.15] - гауссовским (нормальным) стационарным случайным процессом. Обе методики дают практически совпадающие оценки среднего времени безотказной работы слабой связи и могут быть использованы как для связей, регулируемых вручную, так и для автоматически регулируемых связей. По [Л.14] эффект автоматического регулирования учитывается на стадии статистической обработки экспериментальных данных по колебаниям обменной мощности.

Рис. 7.3. График функции j (х ) к расчету вероятностной оценки надежности режима слабой связи

7.6.6. Методика НИИПТ . На рис. 7.3 приведен график функции

, (7.14)

причем средняя продолжительность параллельной работы энергосистем без нарушения устойчивости связана с функцией j (x ) следующим соотношением

, (7.15)

где Tp - постоянная времени корреляционной функции Kp (t) колебаний мощности по межсистемной связи

. (7.16)

Для того чтобы определить значение , необходимо располагать двумя параметрами корреляционной функции колебаний обменной мощности по связи: среднеквадратическим отклонением нерегулярных колебаний мощности s и постоянной времени корреляционной функции Тр . При помощи первой из них из выражения (7.13) по заданным значениям предела статической устойчивости Рпр и планируемого среднего значения перетока мощности определяется значение отстройки х . Далее для полученного значения отстройки х из графика рис. 7.3 определяется соответствующее значение функции j (х ), а из выражения (7.15) с помощью второго параметра корреляционной функции Тр определяется значение средней продолжительности безотказной работы.

Для работающих связей параметры корреляционной функции s и Тр могут быть определены статистической обработкой данных измерений обменной мощности. При решении вопросов присоединения изолированно работающей энергосистемы можно определить параметры корреляционной функции случайных колебаний небалансов активной мощности по измерениям случайных колебаний частоты, учитывая существующую связь между корреляционными функциями частоты (индекс "s ") и нагрузки (индекс "н "):

, (7.17, а)

. (7.17, б)

. (7.17, в)

откуда

(7.18)

здесь Кс - коэффициент крутизны статической частотной характеристики энергосистемы (отн.ед.).

Методика экспериментального определения значений Кс , Ts и ss по регистрациям частоты в энергосистеме изложена в приложении 13. Испытания, проведенные в ряде действующих энергосистем, показывают, что в диапазоне малых отклонений частоты (0,08¸0,12 Гц) значения Кс находятся в пределах 3¸5.

В тех случаях, когда суммарные нагрузки соединяемых на параллельную работу энергосистем различаются более, чем в три раза, можно принимать, что корреляционная функция колебаний обменной мощности по связи совпадает с корреляционной функцией колебаний небаланса активной мощности меньшей из энергосистем, т.е.

(7.19)

При объединении на параллельную работу энергосистем соизмеримой мощности параметры корреляционной функции колебаний обменной мощности по связи могут быть выражены через параметры корреляционных функций колебаний небалансов мощности систем следующим образом:

, (7.20)

, (7.21)

где

, (7.22)

КсАБ - эквивалентный коэффициент крутизны статической частотной характеристики энергообъединения; А и Б - индексы передающей и приемной энергосистем.

Энергообъединение сложной структуры, когда приемная и передающая его части не являются концентрированными энергосистемами, а содержат, в свою очередь, энергосистемы со слабыми связями, приводится к энергообъединению из двух энергосистем, параметры каждой из которых определяются из выражений

, (7.23)

, (7.24)

. (7.25)

Эквивалентные параметры энергообъединения определяются по формулам (7.22)-(7.24). Во всех формулах суммируются величины, приведенные к базисной мощности [Л.14].

В случае применения автоматического регулирования обменной мощности спектр нерегулируемых колебаний небаланса между суммарной нагрузкой и генерацией содержит относительно быстрые и меньшие по величине колебания, что учитывается соответствующим выбором параметров математического фильтра, при помощи которого производится статистическая обработка экспериментальных записей нерегулярных колебаний мощности на ЦВМ (см. приложение 13). Экспериментальные исследования НИИПТ показывают, что для энергосистем мощностью 3¸20 тыс. МВт можно принимать: = 0,2¸0,4%; Тр = 0,5¸2,5 мин; при этом зависимость от значения суммарной нагрузки энергосистемы удовлетворительно аппроксимируется выражением, аналогичным (7.5)

или , МВт. (7.26)

Из рис. 7.3 видно, что значение запаса, необходимого для обеспечения , равного одному году, при изменении Тр = Тн в пределах 0,5¸1,5 мин изменяется относительно мало и близко к 5sрег , где sрег определяется по формуле (7.26). Поэтому в ориентировочных расчетах можно принимать, что запас устойчивости этих связей на нерегулируемые колебания должен быть порядка х = 5. Вероятность отказа регулятора при этом не принимается во внимание.

7.6.7. Методика ВНИИЭ [Л.15]. Среднее время безотказной работы слабой связи оценивается средним временем между выбросами обменной мощности за относительный уровень (7.15), которое оценивается по следующей формуле

, (7.27)

где no - среднее в единицу времени (например, за час) число пересечений нерегулярными колебаниями обменной мощности уровня, равного математическому ожиданию процесса на данном интервале усреднения;

Ф (х ) - гауссовское (нормальное) распределение вероятности Ф (х ) » 1 при х ³ 2,5.

"Доверительные" оценки s и no определяются [Л.16] усреднением результатов, полученных на N часовых интервалах (Ти = 1 ч), относящихся к характерным областям суточных графиков нагрузки соответствующей энергосистемы или энергообъединения (10 £ N £ 25). Кроме того, определяются зависимости s и no от продолжительности интервала усреднения.

Для Ти = 0,5¸1 ч*

_______________

* По данным экспериментов, выполненных для энергосистем мощностью до 100000 МВт [Л.16, 17].

, МВт (7.28)

с = 0,40¸0,50,

no = 15¸25 1/час.

Зависимости этих характеристик от продолжительности интервала усреднения следующие: для tи от 10 до 60 мин при Ти = 60 мин

, (7.29)

. (7.30)

Зависимость среднего времени безотказной работы (7.27) от величины отстройки (7.13) показана на рис. 7.4. При no = 25 1/ч отстройкам x * = 4,5¸5 соответствует = 1000¸10000 ч. При использовании формулы (7.28) в качестве Рн подставляется значение суммарной нагрузки меньшей из соединяемых энергосистем или группы энергосистем меньшей мощности по одну сторону от рассматриваемой межсистемной связи. Значение коэффициента с зависит от времени суток и характера графика нагрузки. Рекомендовано принимать с = 0,5 для дневных интервалов от начала утреннего подъема до окончания вечернего спада нагрузки, а для остальных часов - с =0,4. При увеличения мощности энергообъединений сверх 50000 МВт значение коэффициента с может иметь тенденцию к некоторому увеличению. Поэтому в условиях эксплуатации целесообразно уточнять этот коэффициент экспериментальным путем для конкретных условий работы.

________________

* По данным экспериментов, выполненных для энергосистем мощностью до 100000 МВт [Л.16, 17].

Рис. 7.4. Зависимость среднего времени безотказной работы в зависимости от величины отстройки, no = 20 1/ч

Указанным значениям отстройки (запаса) в размере (4,5¸5) s (МВт), где s определяется формулой (7.28), соответствует оперативная "ручная" корректировка перетока по слабым связям (в часы стабильной нагрузки), которая производится 1-2 раза в час, а в часы подъема и спада нагрузки энергосистем чаще, в соответствии с фактическим ходом изменения перетока и в зависимости от ответственности данной слабой связи в энергообъединении.

7.6.8. Как видно из сопоставления выражений (7.28) и (7.26), автоматическое регулирование межсистемного перетока снижает нерегулярные колебания обменной мощности. Это позволяет увеличить среднюю передаваемую мощность. Однако отказ по каким-либо причинам регулятора перетока приводит к восстановлению колебания обменной мощности до естественных величин и к увеличению вероятности нарушения устойчивости параллельной работы по данной связи. Выбранная с учетом вероятности отказа регулятора отстройка регулируемого перетока по [Л.16] может быть снижена с 5s до (2-3)s, где значение s определено по формуле (7.28). Такая отстройка предоставляет оперативному персоналу время, достаточное для того, чтобы после отказа регулятора вручную снизить переток и сохранить устойчивость.

Таким образом, исходя из принятых требований надежности, определяемых средней продолжительностью безотказной работы , может быть определен расчетный запас статической устойчивости для автоматических регулируемых и регулируемых вручную слабых межсистемных связей.

7.6.9. Полученная из анализа надежности суммарная отстройка среднего перетока от предела статической устойчивости, равная примерно х S = 5s, должна быть сопоставлена с рекомендованным выше запасом статической устойчивости: 3s плюс нормативный запас 20%. Допустимая средняя (плановая) нагрузка слабой межсистемной связи определяется большим из сопоставленных запасов.

При этой необходимо учитывать, что в нормальном режиме в случаях, когда это необходимо для предотвращения ограничения потребителей или потери гидроресурсов, допускается длительная работа линии электропередачи с уменьшенным до 5¸10% запасом, в зависимости от ее роли в энергосистеме и последствий возможного нарушения устойчивости. При меньшей отстройке перетока требуется его более частая корректировка. Соответственно, в зависимости от характера использования слабой межсистемной связи, времени, в течение которого должна быть увеличена обменная мощность, и последствий возможного нарушения устойчивости, значение также может быть снижено до нескольких месяцев.

7.6.10. Наряду с нерегулярными колебаниями обменной мощности на надежность режима работы межсистемных слабых связей могут оказывать влияние следующие факторы: внезапные отключения мощных источников энергии или нагрузки в соединяемых энергосистемах, отключения участков или параллельных цепей межсистемных линий электропередачи, понижения напряжения по концам межсистемной связи, изменения частоты энергообъединений [Л.9] и т.п. Вопросы учета вероятностей подобных эксплуатационных возмущений при управлении режимами межсистемных линий электропередачи рассматриваются в [Л.18-20]. Методика расчетов надежности с учетом основных влияющих факторов изложена в [Л.21]; эта методика может быть рекомендована пока лишь для опытного применения.

Глава 8. САМОВОЗБУЖДЕНИЕ И САМОРАСКАЧИВАНИЕ В ЭНЕРГОСИСТЕМАХ

8.1. Общие указания

8.1.1. Под самовозбуждением следует понимать вид электромагнитной неустойчивости генераторов, при появлении которой в значительной степени или полностью теряется возможность управления установившимся режимом. При этом в отдельных точках системы самопроизвольно могут устанавливаться значения напряжений, опасные для изоляции оборудования. Нарастание тока и напряжения в процессе самовозбуждения может быть либо апериодическим (синхронное самовозбуждение), либо колебательным (асинхронное самовозбуждение). Частота тока и напряжения при самовозбуждении соответствует частоте собственных колебаний в электрическом контуре, образованном внешней сетью с входным емкостным сопротивлением, и электрической машиной. Амплитуда собственных колебаний ограничивается насыщением стали машин и трансформаторов.

Асинхронное самовозбуждение является наиболее опасным для электрических систем вследствие того, что колебания тока и напряжения нарастают до максимального значения в течение нескольких периодов, а существующие автоматические регуляторы возбуждения не в состоянии подавить этот быстроразвивающийся процесс.

8.1.2. Точное определение условий, при которых возможно появление самовозбуждения, следует выполнять анализом системы линейных неоднородных дифференциальных уравнений для вращающейся машины и внешней сети, содержащей емкость. Для нахождения соотношений параметров машины и внешней сети, при которых возможно появление самовозбуждения, а также мероприятий, устраняющих это явление, насыщение может не учитываться [Л.22-30].

8.1.3. Под самораскачиванием следует понимать вид электромеханической периодической неустойчивости энергосистемы, при которой ротор синхронной машины совершает самопроизвольные колебания, заканчивающиеся либо выпадением машины из синхронизма, либо установлением какого-то предельного цикла колебаний, препятствующих нормальной работе энергосистемы. Самораскачивание - явление редкое в практике работы энергосистем и может появиться у небольших слабо загруженных синхронных и асинхронных машин, работающих на сеть со значительным активным сопротивлением, когда отрицательный демпферный момент может быть существенным.

Применение продольной емкостной компенсации на дальних линиях электропередачи, установка компенсированных емкостью синхронных компенсаторов, сооружение электропередач, настроенных на полуволну, повышает вероятность возникновения самораскачивания.

8.1.4. Аналитическое исследование самораскачивания может быть достаточно полно проведено с помощью уравнений Парка-Горева, записанных для малых колебаний энергосистемы в любом заданном нагрузочном режиме.

При принятых условиях энергосистему можно считать линейной и использовать для анализа линеаризованные уравнения Парка-Горева в приращениях значений тока, потокосцепления, угла и т.д.

8.1.5. Самораскачивание и самовозбуждение могут проявляться совместно. Тем не менее, проверку энергосистемы на отсутствие самовозбуждения и самораскачивания проводят раздельно, так как при реальных постоянных инерции роторов машин начало развития самовозбуждения происходит практически при неизменной частоте вращения ротора.

8.2. Самовозбуждение в простейшей энергосистеме

8.2.1. В процессе проектирования и эксплуатации энергосистем следует определять соотношения параметров цепи машина - емкостная нагрузка1 , при которых возникает самовозбуждение.

Рис. 8.1. Схема замещения к расчету самовозбуждения

8.2.2. Во многих случаях схему рассматриваемой части энергосистемы можно приводить к виду, показанному на рис. 8.1; в этой схеме синхронная машина работает на шины неизменного напряжения (в частном случае U = 0) через емкостное сопротивление хс , внешние индуктивное и активное сопротивление r .

_____________

1 Емкостной нагрузкой может быть, например линия электропередачи, включенная односторонне на один или несколько генераторов станции.

* Индуктивное сопротивление хвн , если иное специально не оговорено, вводится в сопротивление машины xd , xq , и т.д.

8.2.3. Возможность возникновения самовозбуждения (необходимое условие) определяется наличием правых корней в характеристическом уравнении [Л.1].

a 0 pn + a 1 pn -1 + … + an -1 p + an = 0, (8.1)

что имеет место, согласно критерию Гурвица, при соблюдении неравенств:

(8.2)

где Dn -1 - предпоследний определитель Гурвица, составленный из коэффициентов (8.1).

Процесс самовозбуждения будет развиваться (достаточное условие), если точка, координаты которой характеризуются параметрами внешней сети хс и r , располагается внутри одной из зон самовозбуждения (рис. 8.2). При этом границы зон самовозбуждения [Л.22, 31] следует определять из условий:

an = 0 (8.3)

для зоны I синхронного самовозбуждения и

Dn -1 = 0 (8.4)

для зон II, III асинхронного самовозбуждения.

Рис. 8.2. Зоны самовозбуждения явнополюсной синхронной машины

8.2.4. Возможность возникновения синхронного самовозбуждения, при котором частота свободных колебаний в цепи статора равна синхронной частоте, следует учитывать как при замкнутой, так и при разомкнутой обмотке возбуждения.

8.2.5. Зона I синхронного самовозбуждения в координатах r и x ограничена половиной окружности, центр которой расположен на оси xс и сдвинут на (xd + xq ) / 2 относительно начала координат. Указанная полуокружность (рис. 8.2) пересекает ось ординат в точках xc 1 = xd и xc 2 =xq , т.е. при r = 0 зона синхронного самовозбуждения определяется значениями емкостного сопротивления внешней сети согласно неравенству

xq < xc < xd . (8.5)

Радиус окружности, которая получается по условию (8.3), определяет максимальное значение активного сопротивления, при котором возможно появление синхронного самовозбуждения:

. (8.6)

При наличии в системе активного сопротивления r > rмакс синхронное самовозбуждение невозможно.

8.2.6. Возможность возникновения асинхронного самовозбуждения в зонах II* и III, где частота вращения ротора не равна частоте колебаний в контурах статора, следует учитывать лишь при замкнутой обмотке возбуждения при изменении емкостного сопротивления внешней сети от 0 до xq (см. рис. 8.2).

______________

* Строго говоря, внутри зоны II можно выделить еще одну область, которую определяют иногда как область репульсионно-синхронного самовозбуждения. На границе этой области комплексные корни обращаются в два действительных кратных корня. Такое разделение зоны асинхронного самовозбуждения II на две области может способствовать уточнению характера процесса, но не имеет практического значения вследствие того, что репульсионно-синхронное самовозбуждение ни по визуальному наблюдению по приборам, ни по виду осциллограмм почти нельзя отличить от асинхронного. Кроме того, процесс самовозбуждения во всей зоне II не может быть устранен существующими в настоящее время АРВ синхронных машин. Способы выделения области репульсионно-синхронного самовозбуждения изложены в [Л.22].

8.2.7. Построение областей самовозбуждения II и III можно проводить, используя метод D -разбиения или пользуясь критерием Раусса.

8.2.8. При проектировании и в эксплуатационных расчетах границу асинхронного самовозбуждения допустимо определять приближенно только по зоне II. Для реально существующих постоянных времени обмотки возбуждения ³ 4 с, можно принять, что зона асинхронного самовозбуждения II также ограничивается половиной окружности, радиус которой равен (xq - ) / 2. Центр окружности расположен на оси xc на расстоянии (xq + ) / 2 от начала координат. Максимальное значение активного сопротивления зоны II в этом случае равно

. (8.7)

Приближенной зоне асинхронного самовозбуждения II при незначительном сопротивлении r соответствует неравенство < xc < xq (см. пример 1 в приложении 14).

8.2.9. При малых значениях постоянной времени обмотки возбуждения машины ( £ 1 с), области асинхронного самовозбуждения II и III искажаются и должны находиться по критерию (8.4).

Наличие демпферных обмоток в продольной и поперечной осях ротора не влияет на границу зоны синхронного самовозбуждения, мало изменяет границы зоны II, но существенно расширяет зону III, наличие которой следует учитывать особенно в схемах с продольной емкостной компенсацией.

8.2.10. При малых значениях так же, как и при специальной конструкции демпферных обмоток с сильно увеличенными постоянными времени, определение зоны асинхронного самовозбуждения II необходимо проводить, используя критерий Гурвица (8.4). В этом случае в характеристическом уравнении (8.1) n = 7. Для расчетов на ЦВМ наиболее целесообразно использование критерия Раусса [Л.22, 31].

8.2.11. Приближенно зона самовозбуждения III определяется частотным методом [Л.22]. При скольжении порядка 20% и выше частотные характеристики машины с демпферными обмотками в обеих осях практически совпадают. В этих условиях синхронная машина может быть заменена асинхронной, частотная характеристика которой соответствует средней частотной характеристике реальной машины в осях d и q . Последние могут быть известны на основе экспериментальных данных или рассчитаны по выражениям xd (р ) и xq (р ) [Л.22, 31].

По частотному методу сопротивление машины представляют в виде

, (8.8)

где w - частота свободных колебаний в роторе. При этом динамическая система, содержащая синхронную машину, преобразуется к статической схеме (рис. 8.3).

Граница области самовозбуждения III определяется условиями резонанса в рассматриваемой схеме и находится согласно выражениям

(8.9)

где 1-w - частота свободных колебаний в схеме рис. 8.3.

При выполнении расчетов этим методом значения w следует задавать от 0 до 1, определять Zг (w), а затем по (8.9) вычислять r и xc . Расчет повторяется до получения всей границы зоны самовозбуждения III. После построения областей II и III их границы соединяются плавной кривой. Параметры внешней сети находят по аналогии с примером, рассмотренным выше.

Пример подобного рода расчетов имеется в [Л.24]. Другой способ нахождения зоны асинхронного самовозбуждения изложен в [Л.25].

8.2.12. Турбогенераторы, как магнитосимметричные машины, не имеют зоны синхронного самовозбуждения I. Полная зона асинхронного самовозбуждения (II и III) турбогенератора расположена в пределах

0 < xc < xd , (8.10)

При достаточно больших постоянных времени обмотки возбуждения турбогенераторов зона асинхронного самовозбуждения II в координатных осях r и хс приближенно описывается полуокружностью, центр которой расположен на оси ординат на расстоянии (xd + ) / 2 от начала координат, а радиус равен (х d - ) / 2.

Таким образом, границе зоны II, определенной в соответствии с принятыми допущениями, отвечают неравенства

(8.11)

8.2.13. Следует учитывать, что зона III асинхронного самовозбуждения турбогенераторов из-за их способности развивать достаточно большой асинхронный момент как при малых, так и больших скольжениях, значительно шире, чем у гидрогенераторов. Зону, асинхронного самовозбуждения III турбогенераторов, где xc < , целесообразно определять частотным методом [Л.24]. Обе зоны (II, III) самовозбуждения турбогенератора показаны на рис. 8.4.

Рис. 8.3. Схема замещения для расчета частотным методом зоны самовозбуждения III

8.2.14. Выявление условий самовозбуждения асинхронных машин изложено в [Л.22]. Примеры, связанные с выявлением условий самовозбуждения турбогенераторов и асинхронных машин приведены в [Л.24].

8.2.15. Исследование возможности устранения самовозбуждения синхронных машин с помощью автоматического регулирования возбуждения следует проводить, рассматривая систему уравнений, которая содержит уравнения переходного процесса в машине, уравнения переходного процесса в возбудителе и регуляторе в соответствии с видом регулирования возбуждения [Л.22, 26, 31]. Получающееся при этом характеристическое уравнение известными методами исследуется на устойчивость.

Как правило, АРВ пропорционального типа предотвращает развитие синхронного самовозбуждения. Пример определения коэффициентов усиления АРВ для устранения синхронного самовозбуждения приведен в [Л.24]. Существующими в практике эксплуатации современных энергосистем АРВ невозможно устранить развитие асинхронного самовозбуждения [Л.27].

Рис. 8.4. Зоны самовозбуждения турбогенератора:

¾¾ при синхронной частоте;

------ при w = 0,95

8.2.16. Учет распределенности параметров ВЛ при анализе самовозбуждения необходим при их длинах, равных 1200 км и более. При этом расширяется зона III асинхронного самовозбуждения. Поэтому эту зону для длин ВЛ более 1200 км рассчитывают с учетом распределенности параметров вдоль линии. При этом используют частотные характеристики машин xd (w), xq (w), rq (w) и соотношения

zc ctg (1 - w) l = хвх = (1 - w) х (w), (8.12)

r = - (1 - w) r (w), (8.13)

где вх - входное сопротивление холостой ВЛ без потерь*;

- волновое сопротивление ВЛ без потерь;

- волновая длина ВЛ без потерь, рад.;

; .

_________________

* Отказ от учета активных потерь в линии практически не изменяет границы зоны III.

Уравнение (8.12) определяет резонансную частоту w. Это уравнение решается графически, для чего строятся зависимости (1 - w) х (w) и zc ctg (1-w) l = хвх от частоты свободных колебаний w для разных заданных длин ВЛ. Точка пересечения этих кривых дает резонансную частоту для каждой из принятых длин линии l (l), зная которую, из уравнения (8.13) определяют соответствующее граничное значение r . Расчеты повторяют при вариации длины ВЛ до получения границы зоны самовозбуждения.

Для выявления достаточных условий развития самовозбуждения вычисляют координаты точки, характеризующей конкретную внешнюю сеть, используя равенства

r = rвл + rген + rтр ,

x = zc ctg (1-w) l + хтр ,

где w - резонансная частота, полученная из предшествующих расчетов;

rген - активное сопротивление генератора на частоте w;

rтр , хтр - активное и реактивное сопротивления трансформатора.

Для определения активного сопротивления линии rвл используют соотношение

где

; q < 0; j = p + q;

;

.

Если известны частотные характеристики ВЛ, то необходимость расчета rвл отпадает.

Возможны и другие методы учета распределенности параметров ВЛ, см. например, [Л.27, 28].

8.2.17. Самовозбуждение в условиях несимметрии параметров схемы и режима энергосистемы менее вероятно, чем при сохранении симметрии. Поэтому проверку энергосистемы на возможность появления самовозбуждения при несимметрии не проводят, если нет опасности самовозбуждения в условиях симметричности. Если же возникает необходимость такой проверки, то исходят из комплексных схем замещения энергосистемы [Л.29].

8.2.18. Если возникает необходимость в проверке отсутствия самовозбуждения при неноминальной частоте , то с достаточной степенью точности зоны самовозбуждения I и II могут быть найдены по уравнению

. (8.14)

_______________

* При подъеме напряжения всей линии электропередачи или ее участков с нуля частота может быть ниже синхронной; при отказах, приводящих к разрыву передачи, возможно повышение частоты до 1,2-1,25 отн. ед. [Л.30].

В последнем уравнении при определении зоны I полагают x 1 = xd , x 2 = xq ; для зоны II x 1 = xq , x 2 = xq . Каждая из зон I, II (см. рис. 8.2) ограничивается в плоскости r и xс полуэллипсом, координаты центров которых равны соответственно:

и . Зона III определяется частотным методом, описанным выше.

При частоте, отличной от синхронной, самовозбуждение принципиально возможно, если емкостное сопротивление внешней сети меньше (см. рис. 8.4, штриховые линии).

8.2.19. Номинальная мощность генераторов Sном , при включении которых на линию электропередачи длиной l самовозбуждение невозможно, рассчитывается по выражению [Л.30]

Sном / Sс = Sном* > xd w tg (wl), (8.15)

где xd = xd г + хтр - сопротивление генератора и трансформатора (отн. ед.), отнесенное к номинальной мощности генератора;