Главная      Учебники - Разные     Лекции (разные) - часть 12

 

Поиск            

 

«Вода знакомая и незнакомая»

 

             

«Вода знакомая и незнакомая»

Министерство образования Российской Федерации

МОУ средняя общеобразовательная школа № 1

«Вода знакомая и незнакомая»

Выполнил:

Кондратенко Владимир

11 «А» класс

Проверил:

преподаватель химии

высшей категории

Десятниченко О.А.

Слайд – презентация

преподаватель информатики

первой категории

Рейзвих Т.Н.

ВОЛХОВ

2005

Содержание

стр

Введение

3

I Размышления о воде великих философов и ученых

3

II Распространение воды в природе

8

III Строение молекулы

9

IV Физические свойства

10

V Аномалии воды

12

VI Химические свойства

16

VII Использование воды

18

VIII Роль воды в жизнедеятельности человека

19

IX Типы питьевой воды

26

IX. Исследование качества питьевой воды

29

X Требования к качеству питьевой воды

35

XI Анализ качества воды в реке Волхов и питьевой воды в городе

37

XII Источники водоснабжения

38

XIII Промышленная очистка воды

45

XIV Бытовая очистка

48

XV Способы фильтрации воды

49

XVI Современные бытовые фильтры

54

XVII Проблемы водосбережения. Конкурс ОАО «Водоканал-сервис» 2004г. Лучшие работы учащихся

57

Заключение

59

Словарь терминов

60

Список использованной литературы

72


ВВЕДЕНИЕ

«Она стоит особняком в истории нашей планеты. Нет природного тела, которое могло бы сравниться с ней по влиянию на ход основных, самых грандиозных геологических процессов. Нет земного вещества — минерала, горной породы, живого тела, которое ее не заключало бы. Все земное вещество... ею проникнуто и охвачено».

Академик В.И.Вернадский

В кружева будто одеты
Деревья, кусты, провода.
И кажется сказкою это,
А в сущности только — вода!

Безбрежная ширь океана
И тихая заводь пруда,
Струя водопада и брызги фонтана
И все это — только вода!

Роль воды в жизни нашей планеты удивительна и, как ни странно, раскрыта еще не до конца.

Цель работы «Вода знакомая и загадочная

• Актуализировать знания о воде.

• Раскрыть уникальные физические, физико-химические и химические свойства воды.

• Проанализировать проблемы очистки воды в промышленном масштабе и домашних условиях.

• Познакомиться с рынком фильтров.

• Изучить качество воды в реке Волхов и питьевой воды в городе

• Рассмотреть лучшие работы участников конкурса «Водоканал-сервис» 2004г.

• Освоить терминологию в области водоподготовки и водосбережения

I РАЗМЫШЛЕНИЯ О ВОДЕ ВЕЛИКИХ ФИЛОСОФОВ И УЧЕНЫХ

Многие столетия люди не знали, что представляет собой вода, и как появилась она на планете.

Древнегреческие ученые сравнивали море с организмом человека, пытаясь тем самым объяснить различные процессы, протекающие в морской среде, например испарение рассматривалось как выделение пота и т. д.

Выдающиеся мыслители древности – Платон (ок. 427 – ок. 347 до н. э.) и его ученик Аристотель (384–322 до н. э.) – уделяли воде большое внимание.

Как известно из сохранившихся документов, своими мыслями Платон делился с учениками во время прогулок по живописному побережью близ Афин. Его представления о мире сформировались в философскую систему, которая господствовала более двух тысячелетий. В основе его системы мироздания лежали четыре стихии: огонь – воздух – вода – земля (рис. 1).

Рис. 1. Представление Аристотеля об элементах и качествах

В научных трудах Платона воде отводилась важнейшая роль. В трактате «Тимей» он утверждал, что стихия, называемая водой, сгущаясь, превращается в камни и землю, но она может стать ветром и воздухом, а воспламенившийся воздух – огнем.

Эти фантастические рассуждения кажутся теперь наивными и смешными, но не спешите улыбаться. Именно так рождались идеи, раскрывающие происхождение различных явлений в природе, и делались первые попытки найти между ними взаимосвязь. А главный вопрос, который волновал человечество в древности, да и теперь не меньше: «Откуда мы?»

Чем дальше человечество уходит от философов древности, тем больше вопросов ставит перед нами окружающий нас мир.

Вот и приходится вспоминать знаменитое восклицание: «Воистину вода лучше всего!» Принадлежит оно греческому философу Фалесу из Милета (ок. 625 – ок. 547 до н. э.), который считал, что в основе всего многообразия явлений и вещей лежит вода. Он, очевидно, был первым, кто отметил необычайность ее физических свойств и, сравнивая с другими веществами природы, указал на способность воды существовать в трех состояниях: твердом, жидком и газообразном.

Представления Фалеса, несомненно, нашли отражение в трудах Платона и его ученика Аристотеля. Сочинения Аристотеля охватывали практически все области тогдашнего знания. Его интересовали вопросы движения воды, ее роль на планете; в его трактатах можно найти и некоторые идеи, приближающие его к пониманию важной проблемы – круговорота воды в природе.

Древнегреческий философ, поэт и врач Эмпедокл из Агригента (ок. 490 – ок. 430 до н. э.) и его соотечественник Демокрит (ок. 470 или 460 до н. э. – умер в глубокой старости) из г. Абдера (Фракия) считали, что, подобно процессу потения, море следует рассматривать как испарину на поверхности земли под лучами солнца.

Римский ученый Плиний Старший (23 или 24 – 79 н. э.) в трактате «Естественная история» высказал идею, объясняющую соленость морской воды. Он утверждал, что благодаря солнцу из воды удаляются пресные компоненты, и поверхностные воды становятся солеными. Однако, по его мнению, глубинные морские воды отличаются слабой соленостью и переходят в пресные. Такая точка зрения просуществовала много веков, пока человек не создал приборы, способные отбирать пробы воды с любой глубины, так называемые батометры.

Множество гениальных идей высказал римский философ Сенека Луций Анней (ок. 4 до н. э. – 65 н. э.)1 . Он суммировал эмпирические взгляды древних в трактате «Проблемы естествознания» и утверждал, что первоначально в мире был хаос. Вещества, по его мнению, растворенные в морской воде, в океане, стали разделяться в течение времени и послужили источником зарождения жизни. Он писал, что соленость морской воды и уровень океана сохраняются постоянно, а существенная прибавка воды из рек в моря компенсируется испарением. Он был весьма наблюдательным естествоиспытателем и отмечал, что в термальных водах растворенные вещества выпадают в осадок и можно наблюдать отложение известняка и других материалов. Сенека обратил внимание на то, что выветривание горных пород приводит к образованию мелей в реках, а с речными водами эти материалы поступают в моря, образуя дельту реки. Он был убежден (и правильно), что вода способна растворять самые твердые горные породы.

Ученый сделал первую попытку классификации вод на научной основе:

1. Океанические воды . Они существовали с самого начала и составляют основную часть природных вод. Из этих вод образовались все другие воды на Земле.
2. Подземные воды . Они циркулируют в грунте и почве; выходят на поверхность в виде источников.
3. Текущие или стоячие воды на поверхности земли. Из них состоят реки, озера и другие водоемы.
4. Воды атмосферы . К ним относятся дождевая вода, снег, иней, роса и т. д.

Римский архитектор и инженер Марк Витрувий, живший во второй половине I в. до н. э., расcмотрел в трактате «Десять книг об архитектуре» наряду с градостроительством вопросы круговорота воды. Он утверждал, что испаряются легкие и полезные для здоровья частицы воды, а тяжелые и грубые остаются.

Испарения морей, рек, источников и болот под действием солнечного тепла сгущаются и образуют облака, поддерживаемые «волной воздуха». При движении они наталкиваются на горы, и вследствие удара выпадают осадки.

Происхождение горячих и холодных источников Витрувий объяснял процессами воспламенения в недрах Земли различных веществ, таких, как квасцы, горная смола, сера и т. д. Они разогревают землю, и протекающая поблизости подземная вода нагревается. Если вода долго течет под землей, то она успевает охладиться, но вкус, запах и цвет оказываются испорченными за счет растворенных пород. Эти взгляды получили широкое распространение и просуществовали вплоть до XVIII в.

Таким образом, римские ученые внесли много рационального в представления о происхождении природных вод, хотя множество идей они заимствовали у греческих философов. Такие мыслители древности, как Плиний, Сенека, Витрувий и другие, обладали прежде всего энциклопедическими познаниями, и созданные ими многотомные трактаты стали документами величайшей ценности, сохранившими до наших дней «дела и мысли» древних естествоиспытателей.

Впервые столетия нашей эры возник и получил развитие своеобразный феномен человеческой культуры – алхимия. Ее крупнейшие представители стремились соединить моменты умозрительных философских построений с практическими знаниями о природных явлениях, и все это делалось ради того, чтобы найти так называемый «философский камень», превращающий неблагородные металлы в золото и серебро.

Начиная с раннего средневековья, по мере усиления христианской церкви, значительно сократились исследования природных явлений, процессов и закономерностей, наблюдаемых в окружающем мире. По существу, все области знания, кроме теологии, остановились в своем развитии.

Изучение природных вод затухало и почти утратило реальные основы – практический опыт – на целое тысячелетие (V–XVI вв.).

Алхимия зародилась в Египте в III–IV вв. н. э., достигла расцвета в Западной Европе в IХ–XVI вв. Развитие многих отраслей научных знаний было таким образом ограничено своеобразным табу.

Представления, сложившиеся веками под влиянием суеверных и религиозных воззрений на окружающий человека мир, становились серьезным препятствием для правильного понимания и истолкования наблюдаемых явлений природы в эпоху средневековья.

Накопленные знания о природных водах, пресных и морских, имели часто путанный, очень расплывчатый характер. Не было ясности вплоть до XVII в. относительно разграничения пресных и соленых вод; полагали, что в природе наблюдаются их взаимные превращения. Такой подход, утвердившийся в эпоху Платона–Аристотеля, два тысячелетия отражал суть воззрений многих поколений естествоиспытателей.

Океанические воды, по мнению некоторых авторитетов XVI–XVII вв., с глубиной становятся все более пресными. Эти представления, зародившись в Древней Греции, перекочевали в труды римских ученых и на протяжении многих столетий принимались алхимиками, благополучно дожив до ХVI–ХVII вв.

В XVI в. естествоиспытатели, объясняя постоянный уровень морей и океанов, часто склонялись к гипотетическим представлениям о пористости Земли, полагая, что морская вода заполняет пустоты, проникая в сушу по многим невидимым каналам. Не зная достаточно отчетливо, насколько морская вода отличается по составу от воды соляных озер и других минеральных источников, ученые считали, что подобные явления одного характера, и находили в этом глубокую связь между водами моря и суши.

В этом хотя и ложном понимании явлений нащупывались первые исходные положения, которые формировали или, вернее, начинали формировать представления о единой картине в гидросфере. Но процесс развития знаний о природных водах был медленным, постоянно наталкивался на преграды, для преодоления которых требовалось длительное время.

Даже такие выдающиеся мыслители, как Роджер Бэкон (ок. 1214–1292) и Леонардо да Винчи (1452–1519), не смогли сколько-нибудь заметно повлиять на состояние и развитие знаний.

Огромный интерес Леонардо да Винчи к естественным наукам, его идеи относительно круговорота воды заслуживают особого внимания. Он намечает создать «Трактат о воде», который включает пятнадцать книг, посвященных различным темам. Заглавия этих книг говорят о значительной предварительной работе, выполненной автором. Вот некоторые из них: о самой воде; о море; о подземных потоках; о реках; о природе пучин; о поверхностных водах; о водоворотах; о каналах; о машинах, приводимых в действие водой; о наводнениях; о веществах, находящихся в воде, и т. д.

Последний раздел представляет несомненный интерес, поскольку указывает на первые попытки изучения химической природы воды. Однако осуществить замысел этого фундаментального труда не удалось, но отдельные записи, найденные уже после смерти автора и дошедшие до нас, говорят о том, что его представления о круговороте воды формировались под влиянием древнегреческих и римских философов. Леонардо да Винчи не слепо заимствует все от древних, как это нередко делали в его эпоху, а принимает только самое рациональное и развивает свои идеи о круговороте воды.

В тезисах к задуманному им труду «Трактат о воде» он так формулирует задачи, относящиеся к гидрологии: «Где есть жизнь, там есть тепло, а где есть жизненное тепло, там происходит движение паров. Это не требует доказательств, ибо мы видим, что элемент огня своим теплом притягивает к себе влажные пары и плотные туманы в виде компактных облаков, которые он заставляет подниматься с морей, озер и рек, из сырых долин; пары эти постепенно поднимаются до области холода, и здесь первая часть их останавливается, потому что тепло и влажность не могут существовать рядом с холодом и сухостью, к первой части одна за другой присоединяются все остальные, и так образуются плотные темные облака. Носимые ветром, они соединяются в большие массы и становятся настолько тяжелыми, что низвергаются сильным дождем, а если силу элемента огня умножает жар солнца, облака притягиваются еще выше и встречают там еще больший холод, в котором образуют лед и снег, и тогда они низвергаются бурями с градом. То же самое тепло, которое удерживает тяжелые массы воды, дождем падающей из облаков, заставляет ее подниматься с подножия гор вверх, достигать вершин и, найдя какие-нибудь расселины, изливаться из них, образуя таким образом реки».

Выдвинутая здесь концепция круговорота воды вполне приемлема и не расходится с современными представлениями.

II РАСПРОСТРАНЕНИЕ ВОДЫ В ПРИРОДЕ

Вода - вещество привычное и необычное.

Нет на Земле вещества более важного для нас, чем обыкновенная вода, и в то же время не существует другого такого же вещества, в свойствах которого было бы столько противоречий и аномалий, сколько в её свойствах.

Вода занимает особое положение среди природных богатств Земли, она - незаменима. Иссякнут запасы металлов - быть может удастся обойтись пластмассами; не хватит растительных и животных белков - научатся получать синтетические. Даже вместо обычного воздуха пригодна в некоторых случаях искусственная смесь газов. Вода же будет необходима во все века и всюду, где существуют земные формы жизни.

Почти 3 /4 поверхности нашей планеты занято океанами и морями. Твёрдой водой - снегом и льдом - покрыто 20% суши. Из общего количества воды на Земле, равного 1 млрд. 386 млн. кубических километров, 1 млрд. 338 млн. кубических километров приходится на долю солёных вод Мирового океана, и только 35 млн. кубических километров приходится на долю пресных вод. Всего количества океанической воды хватило бы на то, чтобы покрыть ею земной шар слоем более 2,5 километров. На каждого жителя Земли приблизительно приходится 0,33 кубических километров морской воды и 0,008 кубических километров пресной воды. Но трудность в том, что подавляющая часть пресной воды на Земле находится в таком состоянии, которое делает её труднодоступной для человека. Почти 70% пресных вод заключено в ледниковых покровах полярных стран и в горных ледниках, 30% - в водоносных слоях под землёй, а в руслах всех рек содержатся одновременно всего лишь 0,006% пресных вод.

Молекулы воды обнаружены в межзвёздном пространстве. Вода входит в состав комет, большинства планет солнечной системы и их спутников.

Тело человека почти на 63 - 68 % состоит из воды. Представители животного и растительного мира содержат такое же обилие воды в своих организмах. Меньше всего воды, лишь 5 - 7% веса, содержат некоторые мхи и лишайники. Большинство обитателей земного шара и растения состоят более чем на половину из воды. Например, млекопитающие содержат 60 - 68 %; рыбы - 70 %; водоросли - 90 - 98 % воды.

Содержание воды в некоторых пищевых продуктах.

Пищевые продукты

Содержание воды, % от массы

Помидоры

95

Грибы

92

Молоко

87

Апельсины

86

Яблоки

84

Рыба

82

Картофель

76

Яйца

75

Мясо (говядина)

64

III СТРОЕНИЕ МОЛЕКУЛЫ

Как известно, свойства химических соединений зависят от того, из каких элементов состоят их молекулы, и изменяются закономерно. Воду можно рассматривать как оксид водорода или как гидрид кислорода. Атомы водорода и кислорода в молекуле воды расположены в углах равнобедренного треугольника с длиной связи «О – Н» 0,957 нм; валентный угол «Н - О – Н» составляет 104° 27’.

Но поскольку оба водородных атома расположены по одну сторону от кислородного, электрические заряды в ней рассредоточиваются. Молекула воды полярна, что является причиной особого взаимодействия между разными её молекулами. Атомы водорода в молекуле воды, имея частичный положительный заряд, взаимодействуют с электронами атомов кислорода соседних молекул. Такая химическая связь называется водородной.

Она объединяет молекулы воды в своеобразные полимеры пространственного строения. В водяном паре присутствует около 1% димеров воды. Расстояние между атомами кислорода - 0,3 нм. В жидкой и твёрдой фазах каждая молекула воды образует четыре водородные связи: две - как донор протонов и две - как акцептор протонов. Средняя длина этих связей — 0, 28 нм, угол Н - О — Н стремится к 180. Четыре водородные связи молекулы воды направлены приблизительно к вершинам правильного тетраэдра.

Роль воды как главного и универсального растворителя определяется прежде всего полярностью её молекул и, как следствие, её чрезвычайно высокой диэлектрической проницаемостью. Разноимённые электрические заряды, и в частности ионы, притягиваются друг к другу в воде в 80 раз слабее, чем притягивались бы в воздухе. Силы взаимного притяжения между молекулами или атомами погружённого в воду тела также слабее, чем в воздухе. Тепловому движению в этом случае легче разбить молекулы. Оттого и происходит растворение, в том числе многих трудно растворимых веществ: капля камень точит.

IV ФИЗИЧЕСКИЕ СВОЙСТВА

Вода - единственное вещество на Земле, которое существует в природе во всех трёх агрегатных состояниях - жидком, твёрдом и газообразном.

Плавление льда при атмосферном давлении сопровождается уменьшением объёма на 9%.Аномально изменяется и плотность воды с изменением температуры. Вначале так же, как и у других веществ, с понижением температуры она увеличивается, но достигнув максимума при 4°С, начинает уменьшаться. Поэтому более тяжелая вода с температурой 4 °С перемещается в глубину, а лед остается на поверхности и изолирует из-за своей плохой теплопроводности воду от дальнейшего замерзания. "Аномальное" поведение воды объясняется ее способностью образовывать ассоциаты за счёт водородных связей, на разрыв которых требуется дополнительная энергия. При образовании ассоциатов, между молекулами воды образуются «пустоты».Ниже 4°С их количество уже приводит к тому, что плотность начинает уменьшаться. У льда, в котором каждая молекула воды связана водородными связями с четырьмя другими, размеры «пустот» превышают размеры молекул воды и плотность его небольшая. При плавлении водородные связи разрушаются, «пустоты» заполняются «одиночными» и «сдвоенными» молекулами воды - плотность возрастает.

Высокая полярность молекул воды обуславливает также её большую диэлектрическую проницаемость и способность растворять полярные вещества («подобное в подобном»).

Температурный коэффициент объёмного расширения льда и жидкой воды отрицателен при температурах соответственно ниже -210°С и + 3,98 С.

Теплоёмкость при плавлении возрастает почти вдвое и в интервале от О 0 С до 100° С почти не зависит от температуры.

Вода имеет незакономерно высокие температуры плавления и кипения в сравнении с другими водородными соединениями элементов главной подгруппы VI группы таблицы Менделеева.

теллуроводород Н2 Те

селеноводород H2 Se

сероводород H2 S

вода Н2 О

t плавления

-510 С

-640 С

-82°С

00 С

t кипения

-40 С

-420 С

-610 С

1000 С

Нужно подвести дополнительную энергию, чтобы расшатать, а затем разрушить водородные связи. И энергия эта очень значительна. Вот почему так велика теплоёмкость воды. Благодаря этой особенности вода формирует климат планеты. Геофизики утверждают, что Земля давно бы остыла и превратилась в безжизненный кусок камня, если бы не вода. Нагреваясь, она поглощает тепло, остывая, отдаёт его. Земная вода и поглощает, и возвращает очень много тепла, и тем самым "выравнивает" климат. Особенно заметно на формирование климата материков влияют морские течения, образующие в каждом океане замкнутые кольца циркуляции.

Водяной пар создаёт мощный "парниковый эффект", который задерживает до 60% теплового излучения нашей планеты, не даёт ей охлаждаться. По расчётам М.И.Будыко, при уменьшении содержания водяного пара в атмосфере вдвое средняя температура поверхности Земли понизилась бы более чем на 5 0 С (с 14,3 0 до 9 0 С).

На смягчение земного климата, в частности на выравнивание температуры воздуха в переходные сезоны - весну и осень, заметное влияние оказывают огромные величины скрытой теплоты плавления и испарения воды.

В 1932 году американцы Г. Юри и Э.Осборн обнаружили, что даже в самой чистой воде, которую только можно получить в лабораторных условиях, содержится незначительное количество какого-то вещества, выражающегося, по-видимому, той же химической формулой Н2 О, но обладающего молекулярным весом 20 вместо веса 18, присущего обычной воде. Юри назвал это вещество тяжёлой водой. Большой вес тяжёлой воды объясняется тем, что её молекулы состоят из атомов водорода с удвоенным атомным весом по сравнению с атомами обычного водорода. Двойной вес этих атомов в свою очередь обусловливается тем, что их ядра содержат, кроме единственного протона, составляющего ядро обычного водорода, ещё один нейтрон. Тяжёлый изотоп водорода получил название дейтерия (D или 2 Н), а обычный водород стали называть протием. Тяжёлая вода, окись дейтерия, выражается формулой D2 O.

Вскоре был открыт третий, сверхтяжёлый изотоп водорода с одним протоном и двумя нейтронами в ядре, который был назван тритием (Т или Н). В соединении с кислородом тритий образует сверхтяжёлую воду Т2 О с молекулярным весом 22.

В природных водах содержится в среднем около 0,016% тяжёлой воды. Тяжёлая вода внешне похожа на обычную воду, но по многим физическим свойствам отличается от неё. Точка кипения тяжёлой воды 101,4° С, точка замерзания + 3,8 С. Тяжёлая вода на 11% тяжелее обычной. Удельный вес тяжёлой воды при температуре 250 С равен 1,1. Она хуже ( на 5 - 15% ) растворяет различные соли. И в физиологическом отношении тяжёлая вода воздействует на живое вещество иначе: в отличие от обычной воды, обладающей живительной силой, тяжелая вода совершенно инертна. Семена растений, если их поливать тяжёлой водой, не прорастают; головастики, микробы, черви, рыбы в тяжёлой воде не могут существовать; если животных поить одной тяжёлой водой, они погибнут от жажды. Тяжёлая вода - это мёртвая вода.

Имеется ещё один вид воды, отличающийся по физическим свойствам от обычной воды, - это омагниченная вода. Такую воду получают с помощью магнитов, вмонтированных в трубопровод, по которому течет вода. Омагниченная вода изменяет свои физико-химические свойства: скорость химических реакций в ней увеличивается, ускоряется кристаллизация растворённых веществ, увеличивается слипание твёрдых частиц примесей и выпадение их в осадок с образованием крупных хлопьев (коагуляция). Омагничивание успешно применяется на водопроводных станциях при большой мутности забираемой воды. Она позволяет также быстро осаждать загрязненные промышленные стоки. ВОДА - одно из главных богатств человечества на Земле

V АНОМАЛИИ ВОДЫ

Обычная вода на самом деле является загадочной жидкостью, поскольку многие ее свойства {плотность, сжимаемость, теплоемкость) являются аномальными - не похожими на свойства большинства других жидкостей. Причина этого заключается в особой структуре воды, обусловленной водородными связями между ее молекулами, которая изменяется с температурой или давлением.

Вода в нашей жизни - самое обычное и самое распространенное вещество. Однако с научной точки зрения это самая необычная, самая загадочная жидкость. Пожалуй, только жидкий гелий может соперничать с ней. Но необычные свойства жидкого гелия (такие, как сверхтекучесть) проявляются при очень низких температурах (вблизи абсолютного нуля) и обусловлены специфическими квантовыми законами. Поэтому жидкий гелий - это экзотическое вещество. Вода же в нашем сознании является прообразом всех жидкостей, и тем более удивительно, когда мы называем ее самой необычной. Но в чем же заключается необычность воды? Дело в том, что трудно назвать какое-либо ее свойство, которое не было бы аномальным, то есть ее поведение (в зависимости от изменения температуры, давления и других факторов) существенно отличается от такового у подавляющего большинства других жидкостей, у которых это поведение похоже и может быть объяснено из самых общих физических принципов. К таким обычным, нормальным жидкостям относятся, например, расплавленные металлы, сжиженные благородные газы (за исключением гелия), органические жидкости (бензин, являющийся их смесью, или спирты).

То, что обычная вода представляет собой еще весьма плохо изученное вещество, объясняется не только сложностью и неопределенностью ее структуры, но и тем, что это жидкое вещество. Значительно легче, нежели жидкое, исследовать твердое вещество или газ, так как в первом молекулы четко упорядочены, а во втором — они слабо взаимодействуют и обладают большой свободой передвижения. Ответа на вопрос: почему существуют две формы конденсированного из газа состояния вещества — жидкое и твердое, — близкие по плотности и энергии межмолекулярного взаимодействия и колоссально отличающиеся по кинетике межмолекулярного взаимодействия, пока еще нет. Не создано теорий, которые адекватно описывали бы жидкое состояние. Не разработана также теория плавления — перехода от порядка к беспорядку в системах с близкими плотностями и энергиями межмолекулярного взаимодействия. Поэтому, например, лед изучен лучше, чем вода. Не получена в лабораториях и абсолютно чистая вода, ее свойства до сих пор остаются загадкой.

Свойство

Аномалия

Значение

Летучесть

Наименьшая среди соединении водорода с элементами подгруппы кислорода

Существенна для физиологии клетки: медленное снижение влажности различных материалов.

Скрытая теплота плавления и испаения.

Наиболее высокая из всех твердых и жидких веществ, за исключением аммиака; с повышением температуры несколько снижается (до 40 °С), затем - возрастает

Термостатирующий эффект в технологических процессах, перенос тепла водными течениями в природе, способствует сохранению постоянной температуры тела

Температура замерзания

Наиболее высокая, за исключением аммиака

Термостатирующий эффект в точке замерзания. Очень важна для сохранения теплового и водного баланса в атмосфере.

Температура

кипения

Наиболее высокая из всех жидкостей

Большие затраты тепла на испарение в производственных процессах; экономия возможна при утилизации тепла, выделяющегося при конденсации пара

Теплопровод-ность

Наиболее высокая из всех жидкостей

Играет роль в теплообменной аппаратуре и процессах малого масштаба, например происходящих в живых клетках

Растворитель

Растворяет многие вещества в больших количествах, чем другие жидкости

Используется в технике как основной растворитель, связывает между собой явления физические и биологические

Плотность

Наибольшая при +4 °С

При замерзании водоемов, нижний слой воды, как наиболее тяжелый, находится при температуре +4 °С. При этом не замерзает и вода в живых организмах.

Вязкость

Уменьшается при увеличении давления

Обеспечивает большую подвижность глубоко в недрах планеты, где давление достигает огромных значений

АНОМАЛИЯ ПЛОТНОСТИ

Всем известна аномалия плотности. Она двоякая. Во-первых, после таяния льда плотность увеличивается, проходит через максимум при 4 0 С и только затем уменьшается с ростом температуры. В обычных жидкостях плотность всегда уменьшается с температурой. И это понятно. Чем больше температура, тем больше тепловая скорость молекул, тем сильнее они расталкивают друг друга, приводя к большей рыхлости вещества. Разумеется, и в воде повышение температуры увеличивает тепловую скорость молекул, но почему-то это приводит в ней к понижению плотности только при высоких температурах.

Вторая аномалия плотности состоит в том, что плотность воды больше плотности льда (благодаря этому лед плавает на поверхности воды, вода в реках зимой не вымерзает до дна и т.д.). Обычно же при плавлении плотность жидкости оказывается меньше, чем у кристалла. Это тоже имеет простое физическое объяснение. В кристаллах молекулы расположены регулярно, обладают пространственной периодичностью - это свойство кристаллов всех веществ. Но у обычных веществ молекулы в кристаллах, кроме того, плотно упакованы. После плавления кристалла регулярность в расположении молекул исчезает, и это возможно только при более рыхлой упаковке молекул, то есть плавление обычно сопровождается уменьшением плотности вещества. Такого рода уменьшение плотности очень мало: например, при плавлении металлов она уменьшается на 2 - 4%. А плотность воды превышает плотность льда сразу на 10%! То есть скачок плотности при плавлении льда аномален не только по знаку, но и по величине.

ПЕРЕОХЛАЖДЕННАЯ ВОДА

В последнее время много внимания уделяется изучению свойств переохлажденной воды, то есть остающейся в жидком состоянии ниже точки замерзания 00 С. (Переохладить воду можно либо в тонких капиллярах, либо - еще лучше - в виде эмульсии: маленьких капелек в неполярной среде - "масле"). Что же происходит с аномалией плотности при переохлаждении воды? Она ведет себя странно . С одной стороны, плотность воды сильно уменьшается по мере переохлаждения (то есть первая аномалия усиливается), но, с другой стороны, она приближается к плотности льда при понижении температуры (то есть вторая аномалия ослабевает).

АНОМАЛИЯ СЖИМАЕМОСТИ

Вот еще пример аномалии воды: необычное температурное поведение ее сжимаемости, то есть степени уменьшения объема при увеличении давления. Обычно сжимаемость жидкости растет с температурой: при высоких температурах жидкости более рыхлы (имеют меньшую плотность) и их легче сжать. Вода обнаруживает такое нормальное поведение только при высоких температурах. При низких же сжимаемость ведет себя противоположным образом, в результате чего в ее температурном поведении появляется минимум при 450 С.

АНОМАЛИЯ ТЕПЛОЕМКОСТИ

Что же это за необычный процесс, происходящий в воде и делающий ее непохожей на другие жидкости? Чтобы уяснить его физическую сущность, рассмотрим еще одну, на мой взгляд, самую сильную аномалию воды - температурное поведение ее теплоемкости. Величина теплоемкости, как известно, показывает, сколько нужно затратить тепла, чтобы поднять температуру вещества на один градус. Для подавляющего числа веществ теплоемкость жидкости после плавления кристалла увеличивается незначительно -никак не более 10%. Другое дело - вода. При плавлении льда теплоемкость скачет от 9 до 18 кал/моль " град, то есть в два раза! Такого огромного скачка теплоемкости при плавлении не наблюдается ни у одного другого вещества: здесь вода абсолютный рекордсмен.

Во льду энергия, подводимая для нагревания, тратится в основном на увеличение тепловой скорости молекул. Скачок теплоемкости после плавления означает, что в воде открываются какие-то новые процессы (и очень энергоемкие), которые тратится подводимое тепло и которые обусловливают появление избыточной теплоемкости. Такая избыточная теплоемкость и, следовательно, упомянутые энергоемкие процессы существуют во всем диапазоне температур, при которых вода находится в жидком состоянии. Она исчезает только в паре, то есть эта аномалия является свойством именно жидкого состояния воды.

Много нового вносят в проблему теплоемкости исследования последних лет по изучению свойств переохлажденной воды. При сильном переохлаждении теплоемкость сильно возрастает, то есть аномальный вклад в нее еще больше увеличивается. Переохлажденная вода еще более аномальна, чем обычная.

Теплоемкость воды «делает погоду»

Климат на планете зависит и от свойства воды - очень большой теплоемкости, то есть способности отдавать и накапливать тепло. В одном литре воды можно запасти в 330 раз большеt тепла, чем в таком же объеме воздуха. Вода медленнее нагревается, но зато долго сохраняет тепло. Поэтому летним вечером на море вода теплее, чем песок на берегу. А Мировой океан - своеобразная грелка для континентов. Его огромные массы воды в прямом смысле слова «делают погоду» на Земле. Летом он не дает суши перегреться, а зимой постоянно «поставляет» ей тепло. Поэтому в странах, расположенных вблизи океана, мягкий морской климат, здесь не бывает ни суровой зимы, ни холодных ночей. Перепады температур в разные сезоны здесь небольшие.

Поверхностное натяжение.

Вода на гладких листьях водных растений похожа на ртутные шарики. Из всех жидкостей вода обладает самым высоким, после ртути, поверхностным натяжением. Именно из-за него капельки росы принимают такую форму. Круглые шарики воды очень упруги.

Если стальную иголку или лезвие безопасной бритвы осторожно положить на поверхность воды, налитой в блюдце, то они не тонут. А ведь металл в 8 раз тяжелее воды! А как легко, не замачивая лапок, скользит по воде жучек водомерка.

Все свойства воды уникальны, исключительны и аномальны. Поэтому из-за своих качеств это соединение наиболее благоприятно для жизни.

VI ХИМИЧЕСКИЕ СВОЙСТВА

Вода - идеальное амфотерное соединение, так как при ее диссоциации образуется равное число ионов Н+ и ОН- . Вода взаимодействует:

1. с щелочными и щелочноземельными металлами:

С натрием, калием и кальцием вода реагирует при обычной температуре; с магнием -при кипении.

2 Na + 2 H 0 H = NaOH + Н2

Са + 2Н0Н - Са (ОН )2 + Н2

Mg + 2Н0Н = Mg ( OH )2 + Н2

2. с амфотерными металлами:

С цинком реакция идет при кипячении; с алюминием, если он без оксидной пленки в виде амальгамы (раствор в ртути) - при обычной температуре; с железом - при высокой температуре (красного каления),

Zn + 2НОН = Zn ( OH )2 + Н2

2 AI + 6Н0Н = 2А1(ОН)3 + 3 H 2

3 Fe +4 H 2 O = Fe 3 O 4 +4 H 2

3. с оксидами активных металлов:

Например, вода взаимодействует с оксидом калия, оксидом кальция (оксиды всех металлов, стоящих в ряду напряжений до Mg включительно).

К2 О + Н2 О = 2КОН

CaO + Н2 О = Са(ОН)2

Кислотные свойства воды

1. Взаимодействие с аммиаком:

Вода является донором протона, т.е. по теории Лоури-Бренстеда - кислотой. Поэтому, она способна реагировать с аммиаком, как кислота, с образованием катиона аммония.

NH 3 + НОН = NH 4 OH или:

NH 3 + НОН - NH + 4 +ОН-

0( I) К ( I) К (I I) 0( I I)

2. гидролиз солей:

Соли, образованные слабыми основаниями, гидролизуются водой. Например, с хлоридом меди (II), гидролиз идет ступенчато.

Си2+ +НОН =Си(ОН)++ СиОН+ + НОН = Си(ОН)2 + Н+

Основные свойства воды

1. Взаимодействие с кислотными оксидами

С12 О72 О = 2НСlO4

2. Взаимодействие с кислотами:

В данном случае вода является акцептором протона, т.е. по теории Лоури-Бренстеда -основанием. При взаимодействии воды с хлороводородом образуется ион гидроксония (Н3 О)+ .

НС1+НОН - Н3 0+ l -

К (1) 0( I ) К ( I I) 0( I I )

3. гидролиз солей

Соли, образованные слабыми кислотами, гидролизуются водой. Для многоосновных кислот реакция идет ступенчато.

СO3 2 -+hoh-hco3 - + 0Н- (I ступень)

Восстановительные свойства воды:

Атом кислорода имеет в воде степень окисления -2, что обуславливает свойства воды как восстановителя.

1. С фтором ( F 2 ), хлором (С l 2 ): Фтор вытесняет кислород. С хлором (Сl2 ), реакция протекает через образование НС1 и НСlO.

2 F 2 +2 H 2 O =4 HF + O 2

С l 2 2 О=НС l +НС l 0

HClO = HCl + [O]

О +О = О2

2. Разложение:

Электролиз является реакцией внутримолекулярного окисления-восстановления.

2 H 2 O =2 H 2 + O 2

Образование гидратов и клатратов:

1. С серной кислотой ( H 2 SO 4 ):

С серной кислотой вода образует гидраты.

H2 SO4 +H2 O=H2 SO4 *H2 O

2. Взаимодействие с солями :

Вода с солями может образовывать кристаллогидраты. Например, с сульфатом меди (II).

CuS 04 +5 H 2 0= CuSO 4 * 5Н2 0

3. Взаимодействие с газами

Образование клатратов (соединений включения газов в структуру воды) связано с проникновением молекул газа в "пустоты", образуемые за счет водородных связей. Эти соединения неустойчивы и существуют за счет слабых межмолекулярных взаимодействий и пространственных затруднений, которые возникают при выходе из "водяного каркаса".

Сl2 *8Н2 О; С2 Н6 *6Н2 О и др.

Вода может служить катализатором, например, щелочные металлы и водород реагируют с СL2 только в присутствии следов воды. Иногда вода - каталитический яд, например, для железного катализатора при синтезе NH 3 . Способность молекул воды образовывать трехмерные сетки водородных связей позволяет ей давать с инертными газами, углеводородами, СО2 , С12 , (СН2 )2 О, СНС13 и многими другими веществами газовые гидраты.

Взаимодействие с органическими веществами:

1. С алкенами n Н2 n ) (ПРИСОЕДИНЕНИЕ):

Например, при взаимодействии с этиленом получается этиловый спирт. Катализатор -серная кислота.

2. С алкенамиn Н2 n ) (ОКИСЛЕНИЕ):

Взаимодействие этилена с водным раствором перманганата калия ведет к образованию этиленгликоля (реакция Вагнера).

3CH2=CH2+2KMnO4+4H2O 3H2C-CH2+2KOH+2MnO2


OH OH

3. С алкинами (С n Н2 n -2 ):

В присутствии соли ртути (II) в кислой среде, вода реагирует с ацетиленом, образуя уксусный альдегид (реакция Кучерова).

Hg2+

СН = CH+HOH [H2 C=CH] Н 3 C-CH

OH O

4. Со сложными эфирами (CR-С-O-R):

Сложные эфиры обратимо гидролизуются водой с образованием соответствующих кислоты и спирта

CH3 COOC2 H5 +HOH=CH3 COOH+C2 H5 OH

5. С карбидом кальция (CaC2 )

Гидролиз карбида кальция идет с образованием ацетилена и Са(ОН)2

CaC 2 +2 H 2 O Ca ( OH )2 + C 2 H 2

6. С полисахаридами:

Гидролиз полисахаридов приводит к образованию моносахаридов. Реакция идет в присутствии кислоты, щелочи или ферментов. Например, гидролиз крахмала или клетчатки.

6 Н10 O 5 ) n + n (НОН) nC 6 H 12 O 6

VII ИСПОЛЬЗОВАНИЕ ВОДЫ

В растворах (преимущественно водных) протекает большинство технологических процессов на предприятиях химической промышленности, в производстве лекарственных препаратов и пищевых продуктов.

Не случайно гидрометаллургия-извлечение металлов из руд и концентратов с помощью растворов различных реагентов - стала важной отраслью промышленности.

Вода-это важный источник энергоресурсов. Как известно, все гидроэлектрические станции мира, от маленьких до самых крупных, превращают механическую энергию водного потока в электрическую исключительно с помощью водяных турбин с соединенными с ними электрогенераторами. На атомных электростанциях атомный реактор нагревает воду, водяной пар вращает турбину с генератором и вырабатывает электрический ток.

Вода, несмотря на все её аномальные свойства, является эталоном для измерения температуры, массы (веса), количества тепла, высоты местности.

Шведский физик Андерс Цельсий, член Стокгольмской академии наук, создал в 1742 году стоградусную шкалу термометра, которой в настоящее время пользуются почти повсеместно. Температура кипения воды обозначена 1000 , а температура таяния льда 00 .

При разработке метрической системы, установленной по декрету французского революционного правительства в 1793 году взамен различных старинных мер, вода была использована для создания основной меры массы (веса) - килограмма и грамма: 1 грамм, как известно, это вес 1 кубического сантиметра (миллилитра) чистой воды при нормальных условиях.

По мере развития цивилизации, освоения новых полей человеку требовалось всё больше и больше воды. Если угодно, развитие цивилизации можно измерять в литрах потребляемой надушу населения воды. Сейчас в самой развитой стране мира - США - на душу населения потребляется в сутки около 7000 л воды, тогда как в некоторых развивающихся странах - не более 30 л, т.е. в 200 раз меньше. Человек каменного века потреблял, видимо, менее 10 л воды в сутки.

Непосредственно для деятельности человека имеет значение одна из главных задач использования воды - её потребление для питьевых и бытовых нужд. Мало кто из жителей городов имеет представление о структуре потребления воды. Оказывается, на питьё и приготовление пищи затрачивается всего 5 % потребляемой человеком воды.

При этом, перефразируя песню из старого кинофильма, можно сказать, что мы "воду пьем" и "воду льем". По подсчётам американских учёных, больше всего воды - 43% - расходуется в смывном бачке в туалете, ванна и душ требуют меньше - 34%воды, мытьё посуды - 6%, стирка - 4%, уборка помещения - 3%, прочие нужды, включая мытьё автомашин и полив лужайки и перед домом, - 5%. В целом бытовое потребление воды 220 - 320 л в сутки на человека

VIII РОЛЬ ВОДЫ В ЖИЗНЕДЕЯТЕЛЬНОСТИ ЧЕЛОВЕКА

Сама по себе вода не имеет питательной ценности, но она является непременной составной частью всего живого. Почти все биохимические реакции в каждой живой клетке - это реакции в водных растворах. С водой удаляются из нашего тела ядовитые шлаки; вода, выделяемая потовыми железами и испаряющаяся с поверхности кожи, регулирует температуру нашего тела. В растениях содержится до 90% воды, в теле же взрослого человека ее 60-65%, но это "усреднено" от общей массы тела. Если же говорить более детально, то кости - это всего 22% воды, однако мозг - это уже 75%, мускулы - тоже 75% воды (в них находится около половины всей воды тела), кровь состоит из воды аж на 92%.

Первостепенная роль воды в жизни всех живых существ, и человека в том числе, связана с тем, что она является универсальным растворителем огромного количества химических веществ. Т.е. фактически является той средой, в которой и протекают все процессы жизнедеятельности.

Вот лишь небольшой и далеко не полный перечень "обязанностей" воды в нашем организме.

Вода:

- Регулирует температуру тела.

- Увлажняет воздух при дыхании.

- Обеспечивает доставку питательных веществ и кислорода ко всем клеткам тела.

- Защищает и буферизирует жизненно важные органы.

- Помогает преобразовывать пищу в энергию.

- Помогает питательным веществам усваиваться органами.

- Выводит шлаки и отходы процессов жизнедеятельности.

Определенное и постоянное содержание воды - вот необходимое условие существования живого организма. При изменении количества потребляемой воды и ее солевого состава нарушаются процессы пищеварения и усвоения пищи, кроветворения и пр. Без воды невозможна регуляция теплообмена организма с окружающей средой и поддержание температуры тела.

Человек чрезвычайно остро ощущает изменение содержания воды в своем организме и может прожить без нее всего несколько суток. При потере воды в количестве менее 2% веса тела (1-1.5л) появляется чувство жажды, при утрате 6-8% наступает полуобморочное со­стояние, при 10% - галлюцинации, нарушение глотания. Потеря 10-20% воды опасна для жизни. Животные погибают при потере 20-25% воды.

Избыточное же потребление воды приводит к перегрузке сердечно-сосудистой системы, вызывает изнуряющее потоотделение, сопровождающееся потерей солей, ослабляет организм.

В зависимости от интенсивности работы, внешних условий (в т.ч. климата), культурных традиций человек суммарно (вместе с пищей) употребляет от 2 до 4 л воды в сутки и столько же воды выделяется из организма). Среднесуточное же потребление составляет около 2 -2.5 л. Именно из этих цифр исходит Всемирная Организация Здравоохранения (ВОЗ) при разработке рекомендаций по качеству воды Немаловажное значение имеет минеральный состав воды. Для постоянного питья и приготовления пищи пригодна пресная вода с общей минерализацией до 0.5 - 1 г/л. Хотя, конечно, в ограниченных количествах возможно (а иногда даже полезно, например, в лечебных целях) употребление минеральной воды с повышенным солесодержанием питьевой воды. Организм человека довольно быстро адаптируется к изменению солевого состава, привыкание требует некоторого времени. Поэтому при резкой (а тем более частой) смене характеристик воды возможны нарушения деятельности желудочно-кишечного тракта, известные в народе как "болезнь путешественников".

Людям, страдающим ожирением, нужно прежде всего много пить: в их организме содержание воды сильно понижено. Так как ожирение чаще всего приводит к гипертонии, рекомендуются олигоминеральные или минимально минерализованные воды с низким уровнем рН и содержанием натрия менее 20 мг на литр. Избегайте сильно газированной воды: она стимулирует выделение желудочного сока, а значит, провоцирует чувство голода.

На Земле нет абсолютно чистой воды, и получить её не так просто.

Даже так называемая дистиллированная вода, которую покупают в аптеках, содержит небольшие дозы растворенных веществ из стенок стеклянных бутылок, в которых она хранится. Каждый раз, выпивая стакан горячего чая, мы вместе с ним выпиваем примерно 0.0001 г растворенного стекла (обычно силикат натрия). Легко подсчитать, что в течение жизни вместе с чаем наш организм поступает 0.1 г стекла. Чтобы полностью растворить стекло при чаепитии, понадобится много поколений людей. Вероятность разбить стакан за этот период неизмеримо выше.

Содержание воды в организме.

Эмбрион человека на 97% состоит из воды, а у новорождённых её количество составляет 77% массы. К 50 годам человек немного «усыхает» и вода составляет только 60% от его массы. Основная часть воды- 70% - сосредоточена внутри клеток, а 30% - это внеклеточная вода, которая разделяется на две части: меньшая, порядка- 7%,- это кровь и лимфа (последняя является фильтратом крови) , тканевой , или интерстициальной (т.е. промежуточной ).Теперь, зная свой вес и возраст каждый может приблизительно подсчитать массу своей внутренней гидросферы и её составляющих.

Как и в косной гидросфере, в нашей «внутренней гидросфере» осуществляется обмен с внешним окружением, своего рода внешний круговорот. Водные потери организма учесть непросто, их средние величины пока имеют приблизительные оценки, а у каждого индивидуума они вообще всегда свои собственные. Хорошо известно, например, что каждый из нас в одних и тех условиях потеет по-своему.

Потери воды при дыхании составляют в среднем около 4 *102 г. Потери с поверхности кожи, связанные в значительной степени с терморегуляцией, меняются, но в среднем составляют 6*10 г. Прямые, назовём их «видимые», потери лежат в пределах (1-1,5)* 10 г. Все эти потери происходят в течение суток, следовательно, общие суточные потери составляют (2-2,5)*10 г воды.

Потери воды приводят к жажде. Человек восполняет их как прямым потреблением воды, так и через пищу, содержащую воду. Но как же возникает жажда. Все составляющие «внутренней гидросферы» находятся между собой в равновесии. Если концентрация растворенных солей в крови, интерстициальной жидкости или внутри клеток растёт, то к ним через биологические мембраны клеток поступает вода. На вывод вредных и ненужных веществ из организма теряется в основном интерстициальная вода, поэтому в ней часто возрастает концентрация солей. На перемещении воды через полупроницаемую мембрану от менее концентрированного раствора к более концентрированному основана работа осморецепторов - клеток, сигнализирующих об уменьшении воды в организме. Эти клетки - центры жажды, или центры регулирования внутренней гидросферы, - находятся в гипоталамусе вместе с центрами голода, терморегуляции и некоторыми другими. Когда вокруг осморецепторов растёт содержание солей, вода из них выходит наружу, и они слегка сжимаются. Этого достаточно для появления чувства жажды. Повреждение соответствующего участка гипоталамуса может вызвать постоянную жажду или, наоборот, отсутствие интереса к воде даже тогда, когда рот пересыхает от жажды.

Сигналы жажды поступают и в результате деятельности почек. Когда масса воды в организме уменьшается, у почек становится работы, и они сигнализируют об этом, выделяя определённый гормон. Чувство утоления жажды наступает обычно сразу после наполнения желудка, но задолго до того, как вода могла бы поступить во внутреннюю гидросферу. Видимо, при наполнении желудка в центр жажды поступает какой-то сигнал, отключающий тревогу.

Но в желудок вода поступает не только извне, туда попадает еще 6-7 л жидкости: 3 л слюны, по три л желудочного и кишечного сока и до 0,5 л — желчи ежесуточно.

Часть воды образуется непосредственно в организме при распаде белков, и углеводов - это так называемая эндогенная вода. Так, при окислении 100 г жиров образуется 107 г воды, а окисление 100 г углеводов дает 55,5 г воды.

Внутренняя гидросфера человека находится в непрестанном движении, в ней идет обмен между составляющими и интенсивное перемещение таких составляющих, как кровь и интерстициальная жидкость. Всем известна мощная работа сердца, которое ежеминутно прогоняет (4,5 - 5) * 10 3 г крови при собственной массе всего (2,2 - 3) * 10 2 г, а за сутки этот небольшой комочек мускулов прогоняет более 1 * 10 7 г крови, т.е. в десятки тысяч раз больше собственной массы и примерно в 150 раз больше массы самого человека

Огромную работу проводят почки, через которые в сутки прогоняется 1*10 г жидкости. Здесь идет очистка гидросферы человека от ненужных и вредных веществ, и от сюда вода начинает свой прямой путь наружу. В среднем за свою жизнь человек потребляет ( и выделяет) 7,5 * 10 г воды, а все население планеты -3,6 * 1017 г. Легко подсчитать, что за свою жизнь(при средней продолжительности жизни 70 лет) человечество может выпить, пропустив через внутреннюю гидросферу, половину всего годового стока рек мира.

На долю воды приходится основная часть массы любого живого существа на Земле. У взрослого человека вода составляет больше половины массы тела. Именно у взрослого человека, потому что в разные периоды жизни содержание воды в организме изменяется. У эмбриона оно достигает 97%; сразу после рождения общее количество воды в организме быстро уменьшается - у новорожденного ее уже только 77%. Дальше содержание воды продолжает постепенно снижаться, пока не станет в зрелом возрасте относительно постоянным. В среднем содержание воды в организме мужчин от 18 до 50 лет составляет 61%, женщин-54% от массы тела. Разница эта связана с тем, что организм взрослых женщин содержит больше жира; при отложении жира вес тела увеличивается, и доля воды в нем снижается (у людей, страдающих ожирением, содержание воды может уменьшиться до 40% от массы тела). После 50 лет организм человека начинает "усыхать": воды в нем становится меньше.

Еще в 1858г. знаменитый французский физиолог Клод Бернар сформулировал принцип постоянства внутренней среды организма - нечто вроде закона сохранения массы- энергии для живых существ. Этот принцип гласит: поступление в организм различных вещество должно быть равно их выделению. Ясно, что и потребление воды должно быть равным расходу. Как же человек расходует воду?

Водные потери организма учесть довольно трудно, потому что немалая часть их приходится на долю так называемых неощутимых потерь. Например, вода в ви­де паров содержится во вдыхаемом воздухе - это примерно 400мл/сут. около 600 мл/сут. ее испарения с поверхности кожи. Немного воды выделяют слезные железы ( и не только тогда, когда мы плачем: выделяемая ими жидкость постоянно омыва­ет глазное яблоко); вода теряется также капельками слюны при разговоре, кашле и т. д. Остальные пути выделения воды легче поддаются учету: это 800-1300мл в су­тки, выделяемые с мочой, и около200мл - с испражнениями.

Если суммировать все вышеуказанные цифры, то получается около 2-2,5л; эта цифра, средняя, потому что расход воды может сильно колебаться в зависимости от внешних условий, индивидуальных особенностей обмена или в результате его нарушений.

В соответствии с этим и суточная потребность организма взрослого человека в воде составляет в среднем около 2,5л. Это, впрочем, вовсе не означает, что человек должен каждый день выпивать не меньше 10 стаканов воды: основная часть потребляемой нами воды содержится в пище. Часть воды образуется также непосредственно в организме в процессе жизнедеятельности — при распаде белков, жиров и углеводов (эндогенная вода). Например, при окислении 100г. жиров возникает 107мл. воды, 100г. углеводов — 55мл. Следовательно, наиболее выгоден (в смысле получения эндогенной воды) жир.

Ни один жизненный процесс в организме человека или животного не может совершаться без воды и ни одна клетка не в состоянии обойтись без водной среды. С участием воды протекают практически все функции организма. Так, испаряясь с поверхности кожи и дыхательных органов, вода принимает участие в процессах терморегуляции.

Процесс пищеварения - важнейшая функция организма. Процесс пищеварения в желудочно-кишечном тракте протекает только в водной среде. В этом про­цессе вода играет роль хорошего растворителя почти всех пищевых продуктов.

Выпитая вода, прежде всего, всасывается сквозь стенки желудка и кишеч­ника в кровь и с ней равномерно распределяется по всему организму, переходя из крови в межтканевую жидкость, а затем и в клетки. Такой обмен воды происходит довольно интенсивно. Находясь в состоянии соединения с водой, пищевые продук­ты (белки, углеводы, жиры, минеральные соли) также легко всасываются в кровь и поступают во все органы и затем ткани организма.

Особенно тяжело человек переносит обезвоживание. Если потери воды не восполняются, то в результате нарушений физиологических процессов ухудшается самочувствие, падает работоспособность, а при высокой температуре воздуха нарушается терморегуляция и может наступить перегрев организма. При потере влаги, составляющей 6-8% от веса тела, у человека повышается температура тела, краснеет кожа, ускоряется сердцебиение, учащается дыхание, переходящее в отдышку, появляется мышечная слабость, головокружение головные боли и наступает полуобморочное состояние. При потере 10% воды могут происходить необратимые изменения в организме. Потеря воды в кол-ве 15-20%при температуре воздуха выше 30° является уже смертельной, а потеря 25% воды смертельна и при более низких температурах.

Так, например, средний состав человеческого тела таков: воды 65%, белка 15%, жира 14%, солей 5%, других 1%. Если человек весит 60 кг, то в его теле содержится около 40 л воды. Половину веса костей и три четверти веса мышц составляет вода. Питательные вещества попадают в нашу кровь через стенки пищеварительного канала. Через эти стенки могут проникать только вещества, растворённые в воде, только жидкости. Если бы кусок сахара не растворился в слюне и в желудочном соке, сахар не попал бы в кровь. Белок яйца, крахмал хлеба и картофеля не растворяются в воде.

Кровь, состоящая на четыре пятых из воды, разносит питательные вещества по в сему организму. В каждой клетке организма идут свои процессы, и эти процессы неизменно связаны с присутствием в клетке воды. Таким образом, вода нужна для нашего организма как растворитель питательных веществ и как среда, в которой протекают различные процессы, связанные с нашей жизнедеятельностью. Выделяясь потовыми железами и испаряясь с поверхности кожи, вода регулирует температуру нашего тела. Кроме того вода необходима для выведения из организма различных вредных веществ, образующихся в результате обмена.

Таким образом мы видим, что вода в живом организме, как и в природе, не находится в покое. Все новые и новые количества её поступают в организм с пищей и такие же количества выделяются.

Болезни, которые могут быть вызваны из-за качества употребляемой воды.

Питьевая вода - это прежде всего здоровье человека. Так как «вода - это жизнь», то понятно, что естественные воды заселены разнообразными живыми организмами, нередко опасными для здоровья человека. Действительно, неумолимая статистика о том, что 80% всех болезней в мире связано с неудовлетворительным качеством питьевой воды нарушениями санитарно -гигиенических норм водоснабжения. Заболевания подразделяются на пять типов: заболевания, вызываемые зараженной водой (тиф, холера, дизентерия, полиомиелит, гастроэнтерит, гепатит); заболевания и слизистой, возникающие при использование загрязнённой воды для умывания (от трахомы до проказы); заболевания, вызываемые моллюсками, живущими в воде (шистосоматоз и ришта) ; наконец, заболевания, вызываемые живущими и размножающимися в воде насекомыми- переносчиками инфекции (малярия, желтая лихорадка т.п.) Учитывая все ещё не решённые вопросы водоснабжения, в особенности в развивающихся странах, можно только поражаться масштабам заболеваний, связанных с водой, даже сейчас, в век ощутимого прогресса в борьбе с разными заболеваниями.

Заболевания,

возникающие при токсическом воздействии химических элементов и субстанций, находящихся в питьевой воде

Болезнь

Возбуждающий фактор

Анемия

Мышьяк, бор, фтор, медь, цианиды, трихлорэтилен

Апластическая анемия

Бензол

Бронхиальная астма

Фтор

Лейкемия

Хлорированные фенолы, бензол

Заболевания пищеварительного тракта:

а) повреждения

б) боли в желудке

в) функциональные расстройства

Мышьяк, бериллий, бор, хлороформ, динитрофенолы

Ртуть, пестициды

Цинк

Болезни сердца:

Повреждение сердечной мышцы

Нарушение функционирования сердца

в) Сердечно-сосудистые изменения

г) Брадикардия

д) Тахикардия

Бор, цинк, терахлорэтилен, фтор, медь, свинец, ртуть

Бензол, хлороформ, цианиды

Трихлорэтилен (TRI)

Галоформы, тригалометаны, альдрин (инсектицид), и его производные

Динитрофенолы

Дерматозы и экземы

Мышьяк, альдрин и его производные, бор, бериллий, хлор, хлорированные фенолы, хлорнафталины, хром, трихлорэтилен, динитрофенолы, детергенты, фтор, кобальт, никель, продукты дистилляции нефти (масла), пластмассы, ртуть, циклические ароматические углеводороды (ЦАУ)

Флюороз скелета

Фтор

Болезнь “Itai-itai”

Кадмий

Болезнь Кашена–Бека

Железо

Облысение

Бор, ртуть

Цирроз печени

Хлор, магний, бензол, хлороформ, тетрахлорид углерода, тяжелые металлы

Метгемоглобинемия (Цианоз)

Нитраты, нитриты, азиды, хлораты, перхлораты, тетрахлорид углерода, динитрофенолы, фенол

Уремия

Медь, свинец, ртуть

Гипофункция щитовидной железы

Кобальт

Несварение желудка и кишок

Фтор, детергенты, кремний, медь

Злокачественные опухоли почек

Мышьяк, некоторые галоформы

Злокачественные опухоли мочевого пузыря

Мышьяк, хлор

Злокачественные опухоли легких

Мышьяк, ЦАУ, бензопирен

Злокачественные опухоли кожи

Мышьяк, бензопирен, продукты дистилляции нефти (масла), некоторые ЦАУ

Злокачественные опухоли печени

Мышьяк, ДДТ, некоторые галоформы

Злокачественные опухоли желудка

N-нитрозоамины, ЦАУ

Меркуриализм

Ртуть

IX Типы питьевой воды

Питьевая вода не содержит подсластителей или химических добавок, калорий и сахара. Ароматизаторы, экстракты и эссенции, извлеченные из фруктов или специй, могут добавляться в питьевую воду, но эти добавки должны составлять менее одного процента от общего веса продукта. Напитки, содержащие добавок более одного процента от общего веса, определяются уже как безалкогольные, а не как питьевая вода. Кроме того, питьевая вода может быть без содержания натрия или с очень низким содержанием натрия. Некоторые разновидности питьевой воды содержат природный углерод или производятся с искусственным добавлением углерода.

Артезианская вода Напорные подземные воды, заключенные в водоносных пластах горных пород между водоупорными слоями.

Минеральная вода

Питьевая вода, минерализация которой не менее 250 мг/дм3. Не допускается искусственное добавление минеральных веществ. Очищенная вода Питьевая вода, обработанная путем дистилляции, деминерализации и некоторыми другими процессами, отвечающая государственным стандартам. Газированная вода Газированной водой называется питьевая вода, в оригинальный состав которой входит двуокись углерода. Важно отметить, что содовая вода и тоник не являются питьевой водой: эти напитки считаются безалкогольными напитками. Родниковая вода Родниковая вода - вода из источника, находящегося на поверхности земли. Иногда родниковая вода добывается через буровую скважину, причем считается родниковой лишь в том случае, если ее химический состав совпадает с составом воды источника, находящегося на поверхности земли.

Типы минеральных вод.

Минеральная вода – природная и искусственная вода, содержащая повышенное количество (по сравнению с пресными водами) солей, газов, органических веществ, и обладающая специфическими свойствами (температура, содержание биологически активных компонентов, радиоактивность и др.), которые обусловливают ее лечебное действие. Минеральную воду в качестве лечебного и профилактического средства используют уже более двух тысячелетий. Каждая минеральная вода воздействует на физиологические процессы организма, смещая их в ту или другую сторону, Если организм нормально функционирует, то нет надобности смещать это равновесие. Если же нарушены какие-то физиологические и биохимические процессы, то организм страдает и ему нужно помочь. Довольно часто именно минеральная вода оказывается наиболее эффективным терапевтическим средством, восстанавливающим нарушенное равновесие и облегчающее страдание. Для безусловного лечебного эффекта необходимо применять минеральную воду прямо из буровых скважин. Для лечения вне курортов широко используют минеральную воду, разлитую в бутылки. Украина обладает огромными запасами минеральных вод. Для лечения и профилактики различных заболеваний рекомендуются к применению около 200 видов лечебных и лечебно-столовых минеральных вод (не только украинского производства). Разлив их производится на специальных заводах и в цехах предприятий пищевой промышленности. Налитую в бутылки воду зачастую насыщают углекислотой; она должна быть бесцветной, абсолютно чистой, без запаха или постороннего привкуса. Бутылки с минеральной водой хранят в горизонтальном положении в прохладном месте. Нужно грамотно ориентироваться в море минеральных вод, чтобы не нанести вред своему организму. Поэтому мы подробно расскажем обо всех категориях минеральных вод. Одна из самых важных надписей на этикетке – “осадок при 180 градусах”, или “общая минерализация”, или “общее солесодержание”. По минерализации (общее количество растворенных в воде ионов и биологически активных элементов, выражаемое в граммах на литр – г/л) различают следующие виды минеральных вод: слабоминерализованная (до 2 г/л); маломинерализованная (2-5 г/л); среднеминерализованная 5-15 г/л); высокоминерализованная (15-35 г/л); рассольные (35-150 г/л). Без ограничений пить можно только так называемые “столовые воды”, в которых содержится не более 5 г солей на литр; основное назначение этих вод – утоление жажды; состав солей подобран так, что они не придают напитку выраженного солевого вкуса и вместе с тем представляют собой необходимый минимум полезных для организма веществ.

Воды с минерализацией от 5 до 15 г/л пить можно, только чередуя со столовой, иначе в организме начнется накопление солей. Вода же, в литре которой содержится 15 и более граммов солей, врачами расценивается как лекарство и употреблять ее необходимо строго по предписанию врача! По ионному составу минеральная вода бывает: лоридная бикарбонатная сульфатная натриевая кальциевая магниевая. В зависимости от газового состава и наличия специфических элементов различают минеральную воду: углекислую сульфидную (сероводородную) бромистую йодистую мышьяковистую радиоактивную (радоновую) и др. Минеральная вода бывает: холодная (до 20 градусов С) теплая (20-35 градусов С) горячая – термальная (35-42 градуса С) очень горячая – высокотермальная (свыше 42 градусов С). Минеральная вода используется для так называемого питьевого лечения и для ванн, купаний, душей, проводимых в бальнеологических лечебницах, в лечебных бассейнах, а также для ингаляций и полосканий при заболеваниях носоглотки и верхних дыхательных путей, для орошений при гинекологических заболеваниях и т.д. Эффект от питьевого лечения минеральной водой зависит не только от правильного выбора воды, но и от правил ее приема (доза, периодичность, связь с приемом пищи), температуры и т.д., обусловливающих различное действие одной и той же воды. Поэтому питьевое лечение минеральной водой (особенно в домашних условиях) следует проводить только по назначению врача, в строгом соответствии с его указаниями. В случае отсутствия назначенной врачом минеральной воды ее можно заменить другой, близкой к ней по химическому составу и действию, обязательно соблюдая предписанный врачом порядок ее приема. Многие минеральные воды, благодаря приятному вкусу и способности утолять жажду, широко используются как столовые и без ограничения продаются в торговой сети. Однако лицам, страдающим заболеваниями органов пищеварения, сердечно-сосудистой и мочевыделительной систем, а также нарушениями обмена веществ, применять их, не посоветовавшись с врачом, не следует, т.к. это может привести к нежелательным, нередко тяжелым осложнениям. Искусственные минеральные воды, близкие по составу к естественным, готовят из химически чистых солей. Их применяют в так называемых “водолечебницах” для приготовления углекислых, сероводородных, азотных, радоновых, йодобромных хлоридных натриевых и др. ванн. К искусственным минеральным водам, используемым как столовые и утоляющие жажду, относится и содовая вода, представляющая собой пресную воду, насыщенную углекислотой, к которой добавлены двууглекислая сода, хлористый кальций, хлористый магний. Срок годности минеральной воды: в стеклянных бутылках - 2 года со дня разлива, в пластиковых - 18 месяцев. На этикетке должна быть указана дата и название лаборатории, в которой был проведен анализ. Данные должны обновляться каждые 5 лет; если на бутылке значится “1995 г.”, пить эту воду уже не следует. показатель рН указывает на степень кислотности воды и обозначается баллами по шкале от 0 до 14. Идеальный уровень рН для минеральной воды – 7. Вода с показателем рН более 7 является щелочной, а менее 7 – кислой. Краткое описание некоторых минеральных вод: -бикарбонатная вода: Содержит более 0,6 граммов бикарбонатов в литре рекомендуется людям, активно занимающимся спортом, грудным детям (особенно при частой рвоте), больным циститом; противопоказана страдающим гастритом, т.к. содержит ангидриды углекислоты, вызывающие раздражение слизистой желудка; натриевая вода: содержит более 0,2 г натрия в литре; рекомендуется при запорах и плохом пищеварении (в сочетании с хлоридной водой); противопоказана гипертоникам и тем, кому рекомендована низкосолевая диета; -кальциевая вода: содержит более 0,15 граммов кальция в литре; рекомендуется людям, которые не пьют молоко, беременным женщинам, а также детям и подросткам; противопоказаний нет; -сульфатная вода: содержит более 0,2 граммов сульфатов в литре; рекомендуется тем, у кого проблемы с печенью, кроме того, такая вода оказывает слабительный эффект; не показана детям и подросткам, т.к. сульфаты могут препятствовать усвоению кальция, а значит и формированию костей; -хлоридная вода: содержит более 0,2 граммов хлоридов в литре; рекомендуется для регуляции работы кишечника, желчных путей и печени; противопоказана людям с повышенным давлением; -магниевая вода: содержит более 0,05 граммов магния в литре; рекомендуется при запорах, а также в стрессовых ситуациях, поскольку магний участвует в механизме регуляции реакции организма на стресс; противопоказана людям, склонным к расстройствам желудка; -фторная вода: содержит более 0,001 грамма фтора в литре; рекомендуется беременным, людям, страдающим остеопорозом (особенно полезно чередовать ее с водой, богатой кальцием), а также тем, кто живет в районах, где не фторируется водопроводная вода; противопоказана взрослым и детям, принимающим таблетки с фтором, или живущим в местности, где фторируется водопроводная вода; -железистая вода: содержит более 0,001 грамма железа в литре; рекомендуется людям, страдающим железодефицитной анемией; противопоказана людям имеющим проблемы с желудком и двенадцатиперстной кишкой (в частности, с язвенной болезнью); кислая вода: содержит более 0,25 граммов ангидридов углекислоты в литре; рекомендуется людям с пониженной кислотностью желудочного сока; противопоказана людям, страдающим гастритом, язвой, повышенной кислотностью желудочного сока, метеоризмом (т.к. кислая среда резко усиливает ощущение вздутия живота). Некоторые ученые считают, что здоровье человека на 70% зависит от качества потребляемой воды. Поэтому употреблять качественную воду – жизненная необходимость.

X ИССЛЕДОВАНИЕ КАЧЕСТВА ПИТЬЕВОЙ ВОДЫ

Органолептические показатели воды

1. Содержание взвешенных частиц

Этот показатель качества воды определяют фильтрованием определённого объёма воды через бумажный фильтр и последующим высушиванием осадка на фильтре в сушильном шкафу до постоянной массы.

Для анализа берут 500-1000 мл воды. Фильтр перед работой взвешивают. После фильтрования осадок с фильтром высушивают до постоянной массы при 105°С, охлаждают в эксикаторе и взвешивают. Весы должны обладать высокой чувствительностью, лучше использовать аналитические весы.

Содержание взвешенных веществ в мг/л в испытуемой воде определяют по формуле (m1 -m2 ) × 1000/V, где m1 - масса бумажного фильтра с осадком взвешенных частиц, г; m2 -масса бумажного фильтра до опыта, г; V-объём воды для анализа, л.

ПДК=10 мг/л.

2. Цвет (окраска)

При загрязнении водоёма стоками промышленных предприятий вода может иметь окраску, не свойственную цветности природных вод. Для источников хозяйственно-питьевого водоснабжения окраска не должна обнаруживать в столбике высотой 20 см, для водоемов культурно-бытового назначения – 10 см.

Диагностика цвета – один из показателей состояния водоема. Для определения цветности воды нужны стеклянный сосуд и лист белой бумаги. В сосуд набирают воду и на белом фоне определяют цвет воды (голубой, зеленый, серый, желтый, коричневый) – показатель определенного вида загрязнений.

3.Прозрачность

Прозрачность зависит от нескольких факторов: количества взвешенных частиц ила, глины, песка, микроорганизмов, содержания химических соединений.

Для определения прозрачности воды используют прозрачный мерный цилиндр с плоским дном, в который наливают воду, подкладывают под цилиндр на расстоянии 4 см от его дна шрифт, высота букв которого 2 мм, а толщина линий букв 0,5 мм, и сливают воду до тех пор, пока сверху через слой воды не будет виден этот шрифт. Измеряют высоту столба оставшейся воды линейкой и выражают степень прозрачности в сантиметрах. При прозрачности воды менее 3 см водопотребление ограничивается. Уменьшение прозрачности природных вод свидетельствует об их загрязнении.

4. Запах

Запах воды обусловлен наличием в ней пахнущих веществ, которые попадают в не естественным путем и со сточными водами. Запах воды водоемов, обнаруживаемый непосредственно в воде или (Водоемов хозяйственно - питьевого назначения) после ее хлорирования, не должен превышать 2 баллов. Определение основано на органолептическом исследовании характера интенсивно запахов воды при 20 и 60 о С . Характер и интенсивность запаха определяют по предлагаемой методике

Характер и род запаха воды естественного происхождения

Характер запаха

Примерный род запаха

Ароматический

Огуречный, цветочный

Болотный

Илистый, тинистый

Гнилостный

Фекальный, сточной воды

Древесный

Мокрой щепы, древесной коры

Землистый

Прелый, свежевспаханной земли, глинистый

Плесневый

Затхлый, застойный

Рыбный

Рыбы, рыбьего жира

Сероводородный

Тухлых яиц

Травянистый

Скошенной травы, сена

Неопределенный

Не подходящий под предыдущие определения

Интенсивность запаха

Балл

Интенсивность запаха

Качественная характеристика

0

Отсутствие ощутимого запаха

1

Очень слабое

Запах, не поддающийся обнаружению потребителя, но обнаруживаемый в лаборатории опытным исследователем

2

Слабое

Запах, не привлекающий внимания потребителя, но обнаруживаемый, если на него обратить внимание

3

Заметное

Запах, легко обнаруживаемый и дающий повод относиться к воде с неодобрением

4

Отчетливое

Запах, обращающий на себя внимание и делающий воду непригодной для питья

5

Очень сильное

Запах настолько сильный, что вода становится непригодной для питья

Запахи искусственного происхождения (от промышленных выбросов для питьевой воды – от обработки воды реагентами на водопроводных сооружениях и т.п.) называются по соответствующим веществам: хлорфенольный, камфорный, бензиновый, хлорный и т.п.

Интенсивность запаха также оценивается при 20 и 60 о С по 5-балльной системе согласно таблице.

Запах воды следует определять в помещении, в котором воздух не имеет постороннего запаха. Желательно, чтобы характер и интенсивность запаха определяли несколько исследователей.

Определение качества воды методами химического анализа

Водородный показатель ( pH)

Питьевая вода должна нейтральную реакцию (pH около 7). Значение

pН воды водоемов хозяйственного, питьевого, культурно-бытового назначения регламентируется в пределах 6,5-8,5.

Оценивать значения рН можно разными способами.

1. Приближенное значение рН определяют следующим образом. В

пробирку наливают 5 мл исследуемой воды, 0,1 мл универсального индикатора, перемешивают и по окраске раствора определяют рН:

- Розово-оранжевая – рН около 5;

- Светло-желтая – 6;

- Зеленовато-голубая – 8.

2. Можно определить рН с помощью универсальной индикаторной

бумаги, сравнивая ее окраску со шкалой.

3. Наиболее точно значение рН можно определить на рН-метре или

по шкале набора Алямовского

Жесткость воды

Различают общую, временную и постоянную жесткость воды. Общая жесткость обусловлена главным образом присутствием растворимых соединений кальция и магния в воде. Временная жесткость иначе называется устранимой или карбонатной. Она обусловлена наличием гидрокарбонатов кальция и магния. Постоянная (некарбонатная) жесткость вызвана присутствием других растворимых солей кальция и магния.

Общая жесткость варьируется в широких пределах в зависимости от типа пород и почв, а также от сезона года. Значение общей жесткости в источниках централизованного водоснабжения допускается до 7 ммоль « экв./л, в отдельных случаях по согласованию с органами санитарно-эпидемилогической службы – до 10 ммоль « экв./л.

При жесткости до 4 ммоль « экв./л вода считается мягкой, 4 – 8 ммоль « экв./л – средней жесткости, 8 – 12 ммоль « экв./л – жесткой, более 12 ммоль « экв./л – очень жесткой.

Методами химического анализа обычно определяют жесткость общую (Жо ) и карбонатную (Жк ), а некарбонатную (Жн ) рассчитывают как разность Жо – Жк .

Определение карбонатной жесткости воды

Расчет концентрации карбонат- и гидрокарбонат- ионов

В склянку наливают 10 мл анализируемой воды, добавляют 5-6 капель фенолфталеина. Если при этом окраска не появляется, то считается, что карбонат-ионы в пробе отсутствуют. В случае возникновения розовой окраски пробы титруют 0,05 н. раствором соляной кислоты до обесцвечивания. Концентрацию карбонат-ионов рассчитывают по формуле

где ck – концентрация карбонат-иона, мг/л; V(HCl)- объем соляной кислоты, израсходованный на титрования, мл.

Затем в той же пробе определяют концентрацию гидрокарбонат- ионов. К пробе добавить 1-2 капли метилового оранжевого. При этом проба приобретает желтую окраску. Титруют пробу раствором 0,05 н. соляной кислоты до перехода желтой окраски в розовую. Концентрацию гидрокарбонат- ионов рассчитывают по формуле

где сГК – концентрация гидрокарбонат-иона, мг/л; V(HCl)- объем соляной кислоты, израсходованный на титрования, мл.

Карбонатную жесткость Жк рассчитывают, суммируя значения концентраций карбонат- и гидрокарбонат- ионов во формуле

Жк = ск « 0,0333 + сгк « 0,0164,

где 0,0333 и 0,0164 – коэффициенты, равные значениям, обратным эквивалентным массам этих анионов.

Определение аммиака и ионов аммония

Определение аммиака и ионов аммония (качественная с приближенной количественной оценкой). Предельно допустимая концентрация (ПДК) аммиака и ионов аммония в воде водоемов 2 мг/л по азоту или 2,6 мг/л в виде иона аммония.

В пробирку диаметром 13-14 мм наливают 10 мл исследуемой воды, прибавляют 0,2-0,3 мл 30% - ного раствора сегнетовой соли и 0,2 мл реактива Неслера. Через 10-15 мин проводят приближенное определение по табл. 4.

Определение нитратов и нитритов

Предельно допустимая концентрация (ПДК) нитритов в питьевой воде водоемов составляет 3,3 мг/л, нитратов – 45 мг/л.

На часовое или предметное стекло помещают 3 капли раствора дифениламина, приготовленного на концентрированной серной кислоте, и одну две капли исследуемой воды. В присутствии нитрат- и нитрит- ионов появляется синее окрашивание, интенсивность которого зависит от их концентрации.

Ориентировочное суммарное содержание аммиака и ионов аммония в воде

Окрашивание при рассмотрении

Аммиак и ионы аммония

сбоку

сверху

мг азота/л

мг

Нет

Нет

Чрезвычайно слабо-желтоватое

Очень слабо-желтоватое

Слабо-желтоватое

Желтое

Мутноватое, резко-желтое

Интенсивно-бурое, раствор мутный

Нет

Чрезвычайно слабо-желтоватое

Слабо-желтоватое

Желтоватое

Светло-желтое

Буровато-желтое

Бурое, раствор мутный

Бурое, раствор мутный

0,04

0,08

0,2

0,47

0,8

2,0

4,0

Более 10,0

0,05

0,1

0,3

0,5

1,0

2,5

5,0

Более 10,0

Определение хлоридов и сульфатов

Концентрация хлоридов в водоемах – источниках водоснабжения допускается до 350 мг/л.

В водах рек северной части России хлоридов содержится обычно немного, не более 10 мг/л, в южных районах – до десятков и сотен мг/л. Много хлоридов попадает в водоемы со сбросами хозяйственно-бытовых и промышленных сточных вод. Это показатель весьма важен при оценке санитарного состояния водоема.

Качественное определение хлоридов с приближенной качественной оценкой проводят следующим образом. В пробирку отбирают 5 мл исследуемой воды и добавляют 3 капли 10 % -ного раствора нитрата серебра. Приблизительное содержание хлоридов определяют по осадку или помутнению (табл.5).

Качественное определение хлоридов проводят титрованием пробы анализируемой воды нитратом серебра в присутствии хромата калия как индикатора. Нитрат серебра дает с хлорид-ионами белый осадок, а с хроматом калия – кирпично-красный осадок хромата серебра. Из образовавшегося осадков меньшей растворимостью обладает хлорид серебра. Поэтому лишь после того, как хлорид-ионы будут связаны, начинается образование хромата серебра. Появление слабо оранжевой окраски свидетельствует о конце реакции. Титрование можно проводить в нейтральной или слабо щелочной среде. Кислую анализируемую воду нейтрализуют гидрокарбонатом натрия.

Определение содержания хлоридов

Осадок или помутнение

Концентрация хлоридов, мг/л

Опалесценция или слабая муть

Сильная муть

Образуются хлопья, но осаждаются не сразу

Белый объемистый осадок

1-10

10-50

50-100

более100

В коническую колбу помещают 100 мл воды, прибавляют 1 мл 5% -ного раствора хромата калия и титруют 0,05 н.раствором нитрата серебра при постоянном взбалтывании до появления слабо-красного окрашивания.

Содержание хлоридов (Х) в мг/л вычисляют по формуле

где 1,773 – масса хлорид-ионов (мг), эквивалентная 1 мл точно 0,05 н.раствора нитрата серебра, затраченного на титрование, мл.

Качественное определение сульфатов с приближенной количественной оценкой проводят так. В пробирку вносят 10 мл исследуемой воды, 0,5 мл соляной кислоты (1:5) и 2 мл 5%-ного раствора хлорида бария, перемешивают. По характеру выпавшего осадка определяют ориентировочное содержание сульфатов: при отсутствии мути концентрация сульфат-ионов не менее 5 мг/л; при слабой мути, появляющейся не сразу, а через несколько минут, -5-10 мг/л; при слабой мути, появляющейся сразу после добавления хлорида бария, -10-100 мг/л; сильная, быстро оседающая муть свидетельствует о достаточно высоком содержании сульфат-ионов (более100 мг/л).

Определение остаточного хлора в водопроводной воде

Для обеспечения надежности обеззараживания воды необходимо, чтобы после завершения процесса хлорирования в ней содержалось 0,3-0,5 мг/л свободного остаточного хлора.

В коническую колбу вместимостью 500 мл наливают 250 мл водопроводной воды (перед отбором пробы воды следует попускать ее из крана длительное время), 10 мл буферного раствора с рН 406 и 5 мл 10%-ного раствора иодида калия. Затем титруют выделившийся йод 0,005 н. раствором тиосульфата натрия до бледно-желтой окраски, приливают 1 мл 1%-ного раствора крахмала и титруют раствор до исчезновения синей окраски.

Содержание остаточного хлора в воде (Х) вычисляют по формуле

где V1 – объем 0,005 н. раствора тиосульфата натрия, израсходованного на титрование, мл; К– поправка к концентрации тиосульфата; 0,177– масса активного хлора, соответствующая 1 мл 0,005н. раствора тиосульфата натрия, мг; V– объем воды, взятый для анализа, мл.

Приготовление буферного раствора . Для приготовления буферного ацетатного раствора с рН 4,6 смешивают 102 мл 1М раствора уксусной кислоты (60 г 100 %-ной кислоты в один литр воды) и 98 мл 1 М раствор ацетата натрия (136,1 г кристаллической соли в 1 л воды) и доводят объем до 1л прокипяченной дистиллированной водой.

Качественное обнаружение катионов тяжелых металлов

Обнаружение свинца

В пробирку с пробой воды вносят по 1 мг 50 %-ного раствора уксусной кислоты и перемешивают. Добавляют по 0,5 мл 10 %-ного раствора дихромата калия, при наличии в исследуемой пробе ионов свинца выпадает желтый осадок хромата свинца. Пробирку встряхивают и через 10 минут приступают к определению. Содержимое пробирки рассматривают сверху на черном фоне, верхнюю часть пробирки до уровня жидкости прикрывают со стороны света картоном.

Концентрацию свинца в анализируемой воде рассчитывают по формуле

где – содержание свинца в соответствующей пробирке шкалы, мг; V– объем взятый на анализ воды, л.

Обнаружение железа

Предельно допустимая концентрация (ПДК) общего железа в воде водоемов и питьевой воде составляет 0,3 мг/л, лимитирующий показатель вредности органолептический.

Обнаружение общего железа .

В пробирку помещают 10 мл исследуемой воды, прибавляют 1 каплю концентрированной азотной кислоты, несколько капель раствора пероксида водорода и примерно 0,5 мл раствора роданида калия. При содержании железа 0,1 мг/л появляется розовое окрашивание, а при более высоком – красное.

Колориметрический экспресс-метод

1.Обнаружение железа(Ш)). К 5 мл исследуемой воды прибавляют 3 капли роданида аммония (или калия), перемешивают и сравнивают окраску пробы со шкалой.

2.Обнаружение общего железа. К 5 мл исследуемой воды прибавляют 1 каплю бромного раствора и 3 капли раствора соляной кислоты. Через 5 мин прибавляют 3 капли раствора роданида аммония (калия), перемешивают и сравнивают со шкалой (табл. 6).

Шкала для определения железа

Fe, мг/л

0,1

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

Раствор 1,

мл

1,0

1,7

3,2

4,7

6,2

7,8

9,2

10,4

11,6

Раствор 2,

мл

0,7

1,7

3,4

5,1

7,0

9,0

11,1

13,7

16,3

Вода

До 50 мл

XI ТРЕБОВАНИЯ К КАЧЕСТВУ ПИТЬЕВОЙ ВОДЫ

Санитарные нормы показателей качества воды

 

 

 

Показатель

Ед. измер.

Россия *

ЕЭС**

Показатели микробиологического загрязнения

Общее микробное число

кп/100 мп

<50

-

Общие колиформные бактерии

кп/100 мп

отс.

отс.

Органолептические свойства воды

Мутность

ед.ЕМФ

2,6

-

Цветность

градусы

20

-

Привкус

баллы

2

-

Запах 200С/600С

баллы

2

-

Обобщённые показатели

Водородный показатель (рН)

отн., ед.

6,0 - 9,0

6,5 - 9,5

Перманганатная окисляемость

мг О/л

5,0

5,0

Общая минерализация

мг/л

1000

-

Проводимость (электропроводность)

мкС/мс

-

2500

Жесткость общая

мг-экв/л
мг/л

7
350

1
50

Показатели химического состава

Содержание алюминия

мг/л

0,5

0,2

Содержание аммония

мг/л

-

0,5

Содержание железа Fe общ

мг/л

0,3

0,2

Содержание марганца

мг/л

0,10

0,05

Содержание меди

мг/л

1,0

2,0

Содержание цинка

мг/л

5,0

-

Содержание никеля

мг/л

0,10

0,02

Содержание кобальта

мг/л

0,1

-

Содержание хрома Cr3+

мг/л

0,5

-

Содержание хрома Cr4+

мг/л

0,05

0,05

Содержание натрия

мг/л

200

200

Содержание кальция

мг/л

30 - 140

-

Содержание магния

мг/л

20 - 85

-

Содержание сульфатов

мг/л

500

250

Содержание хлоридов

мг/л

350

250

Содержание нитратов

мг/л

45

50

Содержание нитритов

мг/л

3,0

0,5

Содержание фосфатов (по РО43+)

мг/л

3,5

-

Содержание силикатов (активиров.)

мг Si / л

10

-

Содержание фторидов

мг/л

1,5

1,5

Содержание гидросульфидов

мг/л

3,0

-

Содержание сероводорода

мг/л

0,003

0,001

Содержание бикарбонатов

мг/л

400

-

Содержание остатков свободного хлора мг/л

мг/л

0,3 - 0,5

-

* - СанПиН 2.1.4.559-96