Главная      Учебники - Разные     Лекции (разные) - часть 62

 

Поиск            

 

Подводная сварка и резка

 

             

Подводная сварка и резка

введение


В связи с постоянно возрастающим числом морских установок возникает необходимость осуществления сварки для соединений трубопроводов, а также при проведении ремонтных работ опорных конструкций.

Опыт осуществления подводной сварки пока невелик, но уже очевидно, что качество сварных соединений и технология сварочного процесса нуждается в совершенствовании.


  1. разновидности подводной сварки


В настоящее время применяют 4 основных метода подводной сварки:

Сварка в сухой глубоководной камере;

Сварка в рабочей камере (водолазный колокол);

Сварка в портативном сухом боксе;

Мокрая сварка.


  1. Подводная сварка в сухой среде



Сварку выполняют в сухой глубоководной камере, которая вмещает в себя как сварщика, так и сварной узел. Сварка в такой камере осуществляется в абсолютно сухой среде. Сварные швы, полученные в ней, не отличается по качеству от сварных швов, сделанных на суше. Однако сухая глубоководная камера очень громоздка, Ее сооружение длительный, дорогостоящий и сложный процесс, требующий использования вспомогательных судов и плавучих кранов. Для создания естественной среды камеру с открытым дном или подводную сварочно-монтажную камеру устанавливают на места будущих соединений труб. После того как между трубой и камерой помещены уплотнения, а внутри труб – пневматические заглушки, газ, находящийся в водолазном снаряжении, вытеснят морскую воду из камеры. Затем сварщик-водолаз входит в камеру и выполняет сварку в сухой среде. Термин "сварка в сухой среде" обозначает сваривание при высоком гидростатическом давлении сварщиком-водолазом, полностью находящимся в сухой среде, созданной под водой.На рис. 2.1 представлен барокомплекс состоящий из гидротанка, жилого и шлюзового модулей. Гидротанк барокомплекса имеет диаметр 3,7 м и состоит из двух отсеков: верхнего и нижнего, заполненного водой. Жилой модуль (внутренний диаметр 2,14м) одновременно является декомпрессионной камерой и соединяет верхнию часть гидротанка со шлюзовым модулем. Шлюзовой модуль ,в котором всегда поддерживается атмосферное давление, используется в случае необходимости принять людей или передать крупные прдметы в жилой модуль, в то время когда он находится под давлением. Гидротанк и жилой модуль оборудованы индивидуальными системами жизнеобеспечения, которые поддерживают нужную температуру, влажность, парциальное давление кислорода; удаляют из камеры двуокись углерода и другие вредные примеси, обусловленные жизнедеятельностью организма. Сварщики вдыхают смесь гелия и кислорода, в которой в независимости от глубины поддерживается парциальное давление кислорода 29,4 кПа.

Для сварки в барокамерах применяют то же сварочное оборудование, такой же электродержатель, шланг-кабель, токоподвод и т. д., что и в естественных условиях. Так же используют оборудование для удаления паров и продуктов сгорания, корректор речи в гелиево-кислородной среде, телевизионную установку с монитором внутри модуля, газоанализатор и пр.


При погружении на небольшой период времени пользуются следующими режимами декомпрессии:


Глубина, м Время на глубине, мин Время декомпрессии, ч
75 30 2
75 60 5
93 30 3,3
93 60 9
137 30 12
137 60 22

Поскольку время пребывания на дне ограничено, а обычный промежуток между погружениями составляет 2 ч, представляется целесообразным для осуществления всех водолазных работ, за исключением кратковременных осмотров, использовать метод погружения, при котором ткани тела водолаза, работающего под водой, насыщается инертным газом. Скорость насыщения зависит в основном от глубины погружения и времени нахождения под водой. Время декомпрессии зависит от количества растворенного газа. С наступлением состояния насыщения время декомпрессии становится постоянным и зависит от дальнейшей экспозиции. Это явление позволяет осуществлять подъем водолазов после погружения в колоколе, в котором сохраняется давление, равное глубине погружения, до тех пор, пока водолазы не перейдут в декомпрессионную камеру на палубе, в которой поддерживается такое же давление. Таким образом, удается избежать декомпрессии между отдельными погружениями и предоставить отдых водолазам.

Метод длительного пребывания позволяет водолазам проводить на глубине более длительный период, а время декомпрессии при этом не увеличивается. Недостаток этого метода – использование дополнительного оборудования и привлечение дополнительного обслуживающего персонала, что ведет к большим затратам материальных средств.

Кроме водолазного колокола может быть использован погружаемый аппарат с выходом водолаза через шлюзовое устройство.

На рис.2.2 представлен общий вид системы с использованием сварочно-монтажных камер с нормальным атмосферным давлением.

П
риведенная система позволяет решить проблемы связанные с декомпрессией сварщиков-водолазов. Очевидно, что оборудование такой камеры весит немало и центрирование труб занимает много времени, но гарантируемое качество сварных швов оправдывает затраты времени.

Доставка персонала осуществляется сухим способом в камере с атмосферным давлением.

Применение глубоководной водолазной техники уже оправдало себя на глубине до 200 м, в настоящее время возможно погружение на глубину до 300 м.

Пока ни одно приспособление не может заменить мастерство водолазов и их способность двигаться в ограниченных пространствах в районе свариваемого соединения. Однако на глубине 600 м возникает физиологический и медицинский барьер, не позволяющий дальнейшее погружение. На глубинах от 300 до 600 м погружение водолазов следует рассматривать лишь как крайнюю необходимость, а работы на глубинах свыше 600 м должны осуществляться посредством дистанционно управляемых рабочих комплексов, а также подводных аппаратов с нормальным давлением.


3. сухая глубоководная (гидросварка)


Для осуществления гидросварки необходимо обеспечить локализованную стабильную сухую газовую среду вокруг свариваемого соединения и сварочной головки при помощи изготовленных по особому заказу камер или при помощи легких портативных боксов. В обоих случаях непрерывная полуавтоматическая сварка электродной проволокой осуществляется в сухой среде.

Закрепляемое на месте сварки заграждение, называемое гидробоксом, изготавливают частично или полностью из прозрачного материала. Бокс должен плотно прилегать к свариваемому соединению и обеспечивать герметичность. Основание бокса делается открытым для возможности ввода в нее водолазом-сварщиком сварочной головки. Для вытеснения из бокса воды и создания сухой среды в него подается смесь инертных газов под соответствующим давлением. Через прозрачные стенки бокса сварщик может наблюдать за дугой и сварочной ванной. Гидробокс обычно изготовляют по специальному заказу, при необходимости его можно быстро и просто изготовить на месте.

На рис.1. изображен гидробокс для ремонта вертикального трубопровода.

Плавящаяся электродная проволока подается с определенной скоростью через гибкий шланг к водонепроницаемой сварочной головке, находящейся в руках водолаза-сварщика. Инертный газ может подаваться к головке для того, чтобы выпускаться вместе со сварочной проволокой и защищать сварочную дугу, возникающую между концом электрода и свариваемого участка.

Установка подачи проволоки, которая включает механизм подачи проволоки, тяговый привод и катушку проволоки в водонепроницаемом кожухе, располагают под водой недалеко от места сварки. В кожухе при помощи системы подачи газа постоянно поддерживается давление газа больше, чем давление окружающей воды. Напряжение подается на дугу от источника постоянного тока, находящегося на поверхности и подсоединенного к электродной проволоке и свариваемому участку. Защитный газ, силовой кабель и кабель для контрольно-измерительных приборов подаются к установке подачи проволоки, а значит, и к головке при помощи одного шланг-кабеля.

К
онтроль за проведением сварки, подача проволоки и прочее осуществляются с находящегося на поверхности пульта управления, где расположены контрольно-измерительные приборы, позволяющие регулировать процесс сварки, освобождая от этой обязанности водолаза. Связь водолаза с пультом управления непрерывно поддерживается по радио, хотя контрольно-измерительные приборы позволяют достаточно точно регулировать процесс сварки. Оборудование для полуавтоматической подводной сварки с непрерывной подачей проволоки схематически изображено на рис.2.


Рис.2 . Оборудование для сухой глубоководной полуавтоматической сварки.

1 – источник энергии (генератор постоянного тока или импульсный генератор); 2 – контрольно-измерительная аппаратура; 3 – контрольный блок (подача газа, скорость подачи проволоки и пр.); 4 – запасы газа (4' – агрегат подачи проволоки; 4'' – защитный газ для сварочной головки; 4''' – газ для гидробокса); 5 – шланг для подачи газа; 6 – силовой кабель; 7 – шланг для подачи проволоки; 8 – шунт; 9 – земля; 10 – центральный кабель; 11 – катушка с проволокой; 12 – подводный агрегат подачи проволоки; 13 – тянущие валки; 14 – плавящаяся проволока; 15 – мотор; 16 – герметичный шланг-кабель; 17 – гидробокс; 18 – головка полуавтомата; 19 – сварочная дуга; 20 – подача газа в гидробокс; 21 – свариваемое изделие.


4. Мокрая сварка


1. Ручная дуговая сварка

2. Полуавтоматическая сварка


4. 1 СУЩНОСТЬ ПРОЦЕССА



Способ дуговой сварки под водой основан на способности дуги устойчиво гореть в газовом пузыре при интенсивном охлаждении окружающей водой (рис 4.1). Газовый пузырь образуется за счёт испарения и разложения воды, паров и газов расплавленного металла и обмазки электрода.


Вокруг горящей дуги выделяется большое количество газов, что приводит к повышению в газовом пузыре и частичному выделению газов в виде пузырьков на поверхности воды. Вода разлагается в дуге на свободный водород и кислород; последний соединяется с металлом образуя окислы. Взвешенные в воде продукты сгорания металла и обмазки, состоящие преимущественно из окислов железа, образуют облако взвесей, которое затрудняет наблюдение за дугой.

Устойчивое горение дуги под водой можно объяснить принципом минимума энергии Штеенбека, т.е. условное охлаждение какого-либо участка дуги компенсируется увеличением количества выделяемой энергии на нем. Для компенсации тепловых потерь из-за охлаждающего действия воды и наличия большого количества водорода напряжение на дуге под водой требуется более высокое напряжение (30-35В). Сварку под водой выполняют на постоянном и переменном токе. На постоянном токе дуга горит более устойчиво, чем на переменном, т.к. постоянный ток разлагает воду еще до возбуждения дуги, а переменный ток разлагает воду и образует газовый пузырь в момент короткого замыкания под действием высокой температуры.

С увеличением глубины и давления окружающей среды устойчивость дуги не нарушается; возрастает только напряжение и увеличивается ток.

Подводная сварка возможна в пресной речной и соленой морской воде. В качестве источников питания используют однопостовые и многопостовые сварочные агрегаты, сварочные преобразователи и трансформаторы, имеющие напряжение холостого хода 70-110 В.


4. 2. особенности прОцесса


Продукты разложения воды – водород и кислород, находящийся в зоне дуги, оказывает заметное влияние на качество сварных швов. Водород интенсивно растворяется в жидком металле, вызывая охрупчивание швов, а кислород окисляет сталь и в первую очередь содержащиеся в ней легирующие элементы. Окислы частично всплывают, переходя в шлак, и частично остаются в металле шва в виде неметаллических включений, уменьшающие вязкость и пластические свойства металла шва.

Из-за непосредственного контакта с водой основного металла и металла шва теплоотдача низкоуглеродистой стали значительно выше, чем при сварке на воздухе, что может привести к появлению закалочных структур в металле шва и в зоне термического влияния.

Наличие повышенного давления и охлаждающее действие среды приводят к сжатию столба дуги и повышение температуры последнего. Это может увеличить температурный градиент металла шва и вызвать перегрев электродного металла.

Водолаз-сварщик заключен в водонепроницаемый костюм и находится в плотной среде, стесняющей его движение, кроме того, на него действует дополнительное гидростатическое давление, снижающее его подвижность. Водолаз находится в весьма неустойчивом положении с небольшой отрицательной плавучестью.

Ухудшенная видимость и наличие подводных течений создают неблагоприятные условия как для существования дугового разряда, так и для работы водолаза-сварщика, отрицательно сказываясь на качестве швов и производительности процесса.

Мокрая сварка имеет множество практических преимуществ: сварщик может осуществлять сварку в местах недоступных другими способами; ремонтные работы можно проводить быстрее и с меньшими затратами.


4. 3. ручная дуговая сварка


При сварке под водой выполняют соединения внахлестку, тавровые, угловые, реже стыковые, причем чаще всего способом опирающегося электрода. Горение дуги отличается в этом случае высокой стабильностью. Сварщик перемещает дугу без колебаний поперек шва с сохранением угла наклона электрода. Способом опирающегося электрода можно сварить швы во всех пространственных положениях. Сварку в вертикальном положении производят сверху вниз, при этом электрод наклонен в сторону ведения сварки. Силу тока при подводной сварке опирающимся электродом в нижнем положении устанавливают выше, чем при сварке в обычных условиях (табл 2.1).

Режимы ручной подводной сварки

Таблица 4.1.

Марка электрода Диаметр электрода, мм Сила тока, А Род тока, полярность Коэффициент наплавки, г/А*ч
ЭП-35 4-5 220-240 постоянный, прямая 6,0-6,5

УОНИ-13/45П

ЭПС-5

4

4

5

200-220

160-220

250-270

постоянный, прямая и обратная

6,3-7,0

9,2-9,8

ЭПО-55

4

5

240-260

200-275

постоянный, прямая и обратная; переменный 6,7-9,7
ЭПС-52

4

5

160-200

200-250

постоянный прямая; переменный 5,3-7,9

4. 4. полуавтоматическая сварка


Перспективной является полуавтоматическая сварка, сочетающая механическую подачу проволоки в зону дуги с маневренностью и универсальностью ручной сварки (рис.4.4). Кроме того, механическая подача проволоки позволяет длительное время вести процесс сварки без перерывов. Так как проволока имеет меньший диаметр, чем электрод, и не имеет покрытия, создаются благоприятные условия для наблюдения процесса управления формированием шва.

Создание мокрого способа полуавтоматической сварки было связано с большими трудностями. Проведенные предварительные опыты показали, что швы получаются узкими, высокими, с неудовлетворительным качеством поверхности. Кроме того, в швах было обнаружено значительное количество пор и неметаллических включений. Механические свойства этих швов оказались недопустимо низкими.

Использование для защиты дуги аргона и особенно углекислого газа позволяет не значительно понизить содержание водорода в металле шва.


Более эффективным способом защиты дуги от вредного воздействия окружающей среды является использование порошковой проволоки. Разработанная в институте электросварки им. Е.О. Патона порошковая проволока марки ППС-АН1 (диаметр 1,2 – 2,0 мм) позволяет обеспечить стабильное горение дуги и получение (на низкоуглеродистых и низколегированных конструкционных сталях) сварных соединений, равнопрочных основному металлу.

Для механизированной подводной сварки и резки разработаны и применяются полуавтоматы типа ППСР–300–2, "НЕПТУН". Полуавтоматом ППСР – 300 – 2 (рис. 4.4) можно сваривать сталь толщиной 4 мм и более, резать сталь толщиной до 25 мм на глубине до 60 м. В качестве защиты используют углекислый газ. Полуавтомат рассчитан на номинальную силу тока 300 А. Скорость подачи сварочной проволоки диаметром 1,2 или 1,6 мм регулируется в пределах 6,6 – 21,6 см/с. При зарядке кассеты проволокой в количестве 4 – 5 кг сварщик может непрерывно работать 2 – 2,5 ч.


4. 5. Сварочные материалы


Для ручной дуговой сварки под водой используют электроды диаметром 4-6 мм (рис.4.1) из сварочной проволоки марок Св-08, Св-08А, Св-08ГА, Св-08Г2, а для полуавтоматической сварки – проволоки марок СВ-08Г2С, ППС-АН1. Наибольшее применение получили электроды марок ЭПС-5 и ЭПС-52, имеющие в составе покрытия ферросплавы, что улучшает химический состав и механические свойства металла шва. Водонепроницаемость покрытия достигается пропиткой такими составами, как парафин, раствор целлулоида в ацетоне, раствор синтетических смол в дихлорэтане, нитролаке и др.

Для подводной сварки применяют специальные электрододержатели, которые имеют надежную электроизоляцию по всей поверхности. Смена электрода производится только после отключения сварочного тока.



5. ПОДВОДНАЯ РЕЗКА


В данном разделе приводится обзор существующих в настоящее время методов подводной резки.

В подводных условиях применяют различные способы резки:

  1. механические;

  2. термические;

  3. кумулятивные (взрывом).

Наибольшее распространение получили способы термической резки:

  1. электродуговая;

  2. электрокислородная;

  3. газокислородная;

  4. плазменная.

При подводной резке используется тепло концентрированных источников дуги или плазмы и тепло, выделяющееся в результате химического взаимодействия кислорода с металлом. Поскольку разрезаемый металл находится в воде и интенсивно охлаждается, то источник тепла должен иметь высокую концентрацию его в месте реза.


5.1. электродуговая резка


Подводная электродуговая резка отличается от дуговой подводной сварки повышенными значениями сварочного тока и приемами выполнения работ. Поэтому дуговую резку под водой можно выполнять на том же оборудовании, что и подводную сварку. Целесообразно использование постоянного тока прямой полярности, так как это приводит к выделению большого количества тепла в полости реза.

Электроды для резки отличаются от электродов для сварки размерами, толщиной и составом обмазки. Электроды изготовляются из проволоки диаметром 5 – 7 мм, длинной 500 – 700 мм.

При выборе режимов тока для резки следует применять коэффициент K равным 60 –80 А/мм. Практикой установлено, что электродами диаметром 5 мм можно успешно резать металл толщиной больше 50 мм при силе тока 350 – 500А.

Режимы