Главная      Учебники - Разные     Лекции (разные) - часть 52

 

Поиск            

 

Расчет динамических моментов

 

             

Расчет динамических моментов

План

1 Описание исполнительного механизма и технологического процесса его работы......................................................................................................................... 2

2 Задание на курсовое проектирование........................................................ 3

2.1 Кинематический анализ механизма.......................................................... 3

2.2 Построение нагрузочной диаграммы скорости как функции угла поворота кривошипа....................................................................................................... 9

3 Построение планов скоростей.................................................................. 10

4 Расчёт моментов........................................................................................ 13

4.1 Расчёт статического момента.................................................................. 13

4.2 Расчёт динамического момента.............................................................. 14

6. Выбор муфт.............................................................................................. 18

8 Расчёт на статическую прочность выходного вала редуктора............... 21

Вывод............................................................................................................ 25

Список используемой литературы.............................................................. 26

1 Описание исполнительного механизма и технологического процесса его работы

В данном курсовом проекте рассматривается расчет привода подъёмно-качающегося стола. Стол предназначен для передачи слитка с одного ручья прокатного стана на другой. Слитки на стол подаются рольгангом в нижнем положении и снимаются с него в верхнем положениях. В исходное положение (нижнее) стол возвращается без слитка. Двигатель выключается до следующего поступления слитка на стол.

2 Задание на курсовое проектирование

2.1 Кинематический анализ механизма

Рассчитать привод подъёмно-качающегося стола, схема которого приведена на рис.1, нагрузочная диаграмма угловой скорости на рис.2

Рис. 1. Кинематическая схема подъёмно-качающегося стола:

1 - слиток;

2 - стол;

3 - штанга;

4 - трёхплечий рычаг;

5 - контргруз;

6 -шатун;

7 - кривошип;

8 - редуктор.


В таблице 1 приведены значения параметров для варианта 1.

Таблица 1

1 Вес слитка, кН, Gсл 30
2 Вес стола, кН, Gст 800
3 Вес контргруза, кН, Gгр 208
4 Длина слитка, м, Lсл 2,4
5 Расстояние Оз А, м, Lа 8,2
6 Длина стола, м, Lст 10
7 Радиус кривошипа, м, rкр 0,35
8 Длина шатуна, м, Lш 3,0
9 Радиус 1 го рычага, м, rl 0,65
10 Радиус 2 го рычага, м, r2 0,7
11 Радиус 3 го рычага, м, r3 1,7
12 Угол наклона рычагов к горизонту, град, γ 5
13 Число циклов в час, 1/ч, Z 170
14 Время работы, с, to б 8,4
15 Угловая скорость двигателя, рад/с, ωдв 75

По нагрузочной диаграмме угловой скорости (рис.2) определим:

значение угловой скорости ω max ;

зависимость угловой скорости от угла поворота φ кривошипа;

вычислим передаточное число редуктора.

Разобьем нагрузочную диаграмму на участки I, II, III.

Участок I

Время изменяется в пределах

движение равноускоренное, угол поворота определим по формуле

, (1)

где:

ε I – угловое ускорение рад/с.,

t – время в с .,

φ – угол поворота.

ε I -находим из условия, что к моменту 0.1t, ω I = 0.7ω max , Так как в начальный момент ω = 0 поэтомуω = ε t , следовательно

(2)

Уравнение вращательного движения на I участке примет вид

(3)

Угол поворота φ на участке I к моменту 0.1to б

(4)

Из выражения (3) выразим t .

, (5)

подставим в выражение (1) уравнение движения (5) и закон изменения угловой скорости (2), получаем

(6)

Отсюда:

(7)

Участок II

Время изменяется в пределах

,

движение равноускоренное, угловое ускорение определим по формуле

. (8)

Где:

∆ω – изменение скорости за весь второй участок

1 ω ma x - 0,7 ω ma x = 0,3ω ma x ;

t – изменение времени за весь второй участок

0,7to б - 0,1to б = 0,6to б .

Уравнение вращательного движения на этом участке

φ = φо + ωо (t-to )+ ε (t-to )2 / 2

φо – угол поворота в начале участка II(конец участка I),

to – начальный момент времени для участка II,

ωо – скорость вращения в начале участка II.

Подставляя все значения, получаем

φ = 0,035 ω max to б +0,7 ω max ( t - 0,1 to б )+ 0,5 ω max ( t - 0,1 to б )2 /2 to б (9)

Выражение (9)

при t =0,1 to б (начало участка II ) даетзначение φ = 0,035ω max to б

при t =0,7 to б (конец участка II ) дает значениеφ = 0,545 ω max to б

Закон изменения скорости на участке II примет вид

(10)

Подставим значение ω 0 =0,7 ω max и получим

(11)

Отсюда . Значение t подставим в выражение (9)

Из этого выражения выразимω II

(14)

Участок III

Время изменяется в пределах

,

Так как движение равнозамедленное, отрицательное угловое ускорение определим по формуле

. (15)

Где:

∆ω – изменение скорости за весь третий участок ∆ω = ω max ;

t – изменение времени за весь третий участок t = 1 - 0,7 to б .= 0,3 to б

Закон изменения скорости на участке III примет вид

(16)

Уравнение вращательного движения на этом участке

φ = φо + ωо (t-to )+ ε III (t-to )2 / 2

φо – угол поворота в начале участка III(конец участка II), φ = 0,545 ω max to б

to – начальный момент времени для участка III,to = 0,7 to б

ωо – скорость вращения в начале участка III- ωо = ω max .

Подставляя все значения, получаем

φ = 0,545 ω max to б + ω max ( t - 0,7 to б ) - ω max ( t - 0,7 to б )2 /0,6 to б (17)

Выражение (17)

при t = 0,7 to б (начало участка III ) даетзначение φ = 0,545 ω max to б

при t = to б (конец участка III ) дает значение

φ = 0,545 ω max to б + 0,3 ω max to б - ω max (0,09 to б 2 )/0,6 to б =0,695ω max to б

Из выражения (16) выразим t

,(18)

и подставим в выражение (17). Преобразовывая, получим.

Из этого выражения выразимω III

(18)

Значение ωmax определим из выражения (17) при t = to б (конец участка III ) φ =0,695ω max to б . Полный оборот φ = выходной вал редуктораделает заto б =8,4с , поэтомуω max = 2π/0,695 to б = 1,05рад/с

Передаточное число редуктора:

Где:

ω дв = 75-угловая скорость быстроходного вала редуктора, рад/с ;

ω max = 1,05-угловая скорость тихоходного (ведомого) вала редуктора, рад/с .

2.2 Построение нагрузочной диаграммы скорости как функции угла поворота кривошипа

По результатам расчётов угловой скорости и углового ускорения кривошипа строим графики ω = ω (φ ) рис.1. и ε = ε (φ) рис.2. приложения 1

Диаграммы строим по результатам кинематического расчёта для двенадцати положений механизма через 30О и дополнительно включая точки перелома соответствующие углам поворота для t =0,1 to б рассчитываем по формуле (4) т.е.

φ = 0,035 ω max to б = 0,035 * 1,05 * 8,4 = 0,309 рад=180*0,309 /π=18О

и для t =0,7 to б рассчитываем по формуле (9) т.е.

φ = 0,545 ω max to б =0,545*1,05*8,4 =4,807 рад = 180*4,807 /π=276 О

Для уточнения вида диаграммы на участке I найдем ω и ε на углах поворота φ = 6 О и 12 О .

ε и ω рассчитываем следующим образом:

при 0О φ ≤ 18О расчет ведем по выражениям (2)и (7) соответственно;

при 18О < φ ≤276 О расчет ведем по выражениям (8)и (14) соответственно;

при 276 О < φ < 360О расчет ведем по выражениям (15)и(20) соответственно.

Результаты рассчитанные в программе Mathcad 12 (приложение 1) сведены в таблицу 2.

3 Построение планов скоростей

Планы скоростей строятся для двенадцати положений механизма. С помощью планов скоростей определяются скорости всех характерных точек механизма и центров весомых звеньев. Планы скоростей в приложении 2.

Рассматривая движение кривошипа, находим скорость точки А . Модуль скорости точки А определяется выражением

.

Вектор V A скорости точки А направлен в сторону вращения кривошипа перпендикулярно этому звену. На плане скоростей вектор отображается в выбранном масштабе отрезком [ра].

Рассматривая движение шатуна АВ как плоское и выбирая за полюс точку А , находим скорость точки В

VВ = VА + VВА .

При этом векторном уравнении неизвестны лишь модули векторов VА и VВА (здесь VВА - скорость точки В во вращательном движении звена ВА вокруг полюса А ), следовательно, это уравнение можно решить графически.

Отложив в масштабе вектор VА ([ра] перпендикулярен ОА ), через конец этого вектора проведём прямую, перпендикулярную шатуну АВ . Из точки р проводим прямую, перпендикулярную звену Q B в пересечении этих прямых получим точку В . Длины отрезков [рв] и [ав] в масштабе плана скоростей отражают скорость точки В VВ и скорость точки В вокруг точки А - VВА соответственно.

Очевидно, .

Скорости точек С и Е отображаются на плане скоростей отрезками [рс] и [ре] соответственно и могут быть найдены аналогично предыдущему, то есть

.

Направлены VС и VЕ перпендикулярно положению плеч r2 и r3 соответственно.

Скорость VD точки D определяем графически. Для этого через точку С проводим перпендикуляр положению штанги С D . Через точку Р проводим перпендикуляр к положению стола, точка пересечения прямых есть точка D .

Угловая скорость

Скорость VF центра масс стола (точка F ) и величина угловой скорости ωF стола определяются:

VF = ωD | PF | где | PF |=1 /2 L ст

Модуль скорости Vk центра масс слитка (при условии, что толщиной слитка по сравнению с размерами стола можно пренебречьи слиток находится на краю стола без свисания) определяется аналогично

V К = ωD | P К| где | P К|= L ст -L сл /2

В результате построения планов скоростей для 1,2,3,4,5,6,7,8,9,10,10а ,11,12 положений механизма рассчитываем скорости точек и угловые скорости стола, трёхплечего рычага и шатуна. Рассчеты проведены в программе Mathcad 12 (приложение 2) Результаты сводим в таблицу 3.


Таблица 3

точки

VЕ

м /с

VF

м /с

Vk

м /с

ωD

рад /с

Мст

кНм

J пр* 103

кгм2

кгм2

Мд

кНм

М

кНм

ε-2 рад/с-2

ω-1

рад/с

φ

рад

1 0 0 0 0 0 0 -0,042 0,000 0,000 0,875 0 0
2 0,451 0,095 0,166 0,019 -10,940 9,489 22,945 9,237 -1,703 0,063 0,753 0,524
3 0,673 0,152 0,268 0,030 -8,652 19,420 15,573 7,414 -1,238 0,063 0,795 1,047
4 0,764 0,189 0,333 0,038 1,129 23,880 0,000 1,504 2,633 0,063 0,835 1,571
5 0,732 0,171 0,300 0,034 10,130 19,350 -21,415 -8,139 1,991 0,063 0,874 2,094
6 0,432 0,091 0,161 0,180 3,888 5,940 -18,321 -7,962 -4,074 0,063 0,910 2,618
7 0 0 0 0 0 0 0, 0,145 0,145 0,063 0,946 3,142
8 0,458 0,104 - 0,021 -3,752 5,881 19,937 9,647 5,895 0,063 0,980 3,665
9 0,785 0,192 - 0,038 -4,074 16,560 15,725 9,008 4,934 0,063 1,013 4,189
10 0,956 0,237 - 0,047 7,915 23,300 9,699 6,531 14,446 0,063 1,044 4,712
10а 0,961 0,239 - 0,048 9,311 23,630 3,143 -8,210 1,101 -0,417 1,046 4,817
11 0,785 0,188 - 0,038 14,900 22,820 -17,252 -16,960 -2,060 -0,417 0,863 5,236
12 0,307 0,069 - 0,014 12,930 8,220 -23,403 -9,922 3,008 -0,417 0,555 5,760

4 Расчёт моментов

4.1 Расчёт статического момента

Потери мощности на трение в кинематических парах учитывается с помощью КПД механизма η.

В рассматриваемом примере в механизме имеется семь кинематических пар, из них, предположим, две пары - пары трения качения (соединения кривошипа с тихоходным валом редуктора посредством дополнительного разгрузочного устройства и сединения кривошипа с шатуном), а остальное - пары трения скольжения. Тогда КПД механизма η| определяется так:

η = ηк 2 * ηск 2 * ηск 2 * ηск

При ηк = 0,99, а ηск =0,98. Получим η = 0,992 * 0,982 * 0,982 * 0,98 = 0,885 .

Поскольку на механизм в рассматриваемом случае действуют лишь силы веса (стола, слитка и контргруза), то Мст определяется для 0 < φ < π, т.е. для тех моментов, когда слиток находится на столе, статический момент направлен против угловой скорости вращения кривошипа следующим выражением:

Для π < φ < 2π , т.е. для тех моментов, когда стол возвращается в исходное положение без слитка, статический момент направлен по угловой скорости вращения кривошипа Мст определится выражением:

По данным формулам расчет выполнен в программе Mathcad 12 (приложение 3). Результаты сводим в таблицу 3.

4.2 Расчёт динамического момента

Приведенный к оси кривошипа момент инерции для положений механизма 0<φ< π, т.е для точек 1-7 динамический момент рассчитаем по формуле

Где mгр , mст , mсл - масса груза, стола и слитка соответственно. m=G/g

При π <φ< 2π, т.е для точек 8-12

По данным формулам расчет выполнен в программе Mathcad 12 (приложение 4). Результаты сводим в таблицу 3.

По результатам расчётов строим график изменения приведённого момента инерции Jnp от угла поворота кривошипа φ.(рис.1 приложения 5).

Определение величины (для упрощения записи в дальнейшем обозначим ) производим путём численного дифференцирования.

По графику (рис.1 приложения 5) найдем значения Jnp промежуточных значений (середина каждого участка) и сведём в таблицу 4 значение Jnp рассчитываемых и промежуточных точек. определяем по формуле центрального дифференцирования

.

Точку 10а находим методом левого дифференцирования.


Таблица4

точки

φ

рад

J пр* 103

кгм2

* 103

кгм2

1 0 0 -0,042
0.262 2.400 18,109
2 0.524 9.489 22,945
0.785 14.400 18,989
3 1.047 19.420 15,573
1.309 22.560 8,511
4 1.571 23.880 0,000
1.833 22.560 -8,662
5 2.094 19.350 -21,415
2.356 11.360 -25,592
6 2.618 5.940 -18,321
2.88 1.760 -11,336
7 3.142 0 0,000
3.403 1.760 11,245
8 3.665 5.881 19,237
3.927 11.840 20,380
9 4.189 16.560 15,725
4.451 20.080 12,887
10 4.712 23.300 9,699
10а