Главная      Учебники - Геология     Лекции (геология) - часть 1

 

Поиск            

 

Южно-Ягунское нефтяное месторождение

 

             

Южно-Ягунское нефтяное месторождение

С О Д Е Р Ж А Н И Е

ВВЕДЕНИЕ

1. ОБЩАЯ ЧАСТЬ

1.1 Характеристика района

1.2 История освоения месторождения

2 ГЕОЛОГИЧЕСКАЯ ЧАСТЬ

2.1 Краткая геолого-физическая характеристика месторождения

2.1.1 Стратиграфи

2.1.2 Тектоническое Нефтеносность месторождений. Гидрогеология

2.2 Коллекторские свойства продуктивных пластов

2.3 Свойства пластовых жидкостей и газов

3. ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ

3.1 Основные проектные решения по разработке Южно - Ягунского месторождения

3.2 Текущее состояние разработки

3.3 Анализ системы заводнения

3.4 Анализ результатов гидродинамических исследований скважин и пластов, характеристика их продуктивности и режимов

4 ТЕХНИЧЕСКАЯ ЧАСТЬ

4.1 Требования к конструкции скважин, технологиям и проиводству

буровых работ

4.2 Подземное и устьевое оборудование при различных способах добычи

4.2.1 Фонтанная эксплуатация скважин

4.2.2 Эксплуатация скважин штанговыми глубинными насосными установками

4.2.3 Общие сведения об эксплуатации скважин УЭЦН

4.2.4 Технические характеристики насосов

4.3 Преимущество скважин оборудованных УЭЦН

5 СПЕЦИАЛЬНАЯ ЧАСТЬ

5.1 Характеристика фонда скважин, оборудованных УЭЦН

5.2 Анализ эффективности работы и причины отказов УЭЦН

5.3 Анализ ремонтов УЭЦН не отработавших гарантийный срок

5.4 Анализ применения УЭЦН Российского производства

5.5 Анализ применения УЭЦН импортного производства

5.6 Способы борьбы с осложнениями при эксплуатации УЭЦН

5.7 Подбор оборудования и установление оптимального режима эксплуатации скважин оборудованных УЭЦН

6. ОРГАНИЗАЦИОННО-ЭКОНОМИЧЕСКАЯ ЧАСТЬ

6.1 Оптимизация режима работы скважин.

6.2 Расчет потока денежной наличности от применения НТП.

6.3 Анализ чувствительности проекта к риску.

7. ОЦЕНКА БЕЗОПАСНОСТИ И ЭКОЛОГИЧНОСТИ ПРОЕКТА

7.1 Обеспечение безопасности работающих

7.1.1 Основные вредные и опасные факторы в процессе производства

7.1.2 Расчет заземления скважин, оборудованных ЭЦН

7.1.3 Основные мероприятия по обеспечению безопасных условий труда.

7.1.4 Средства индивидуальной защиты

7.2 Оценка экологичности проекта

7.2.1 Анализ и оценка опасности для природной среды при обслуживании скважин, оборудованных ЭЦН

7.2.2 Расчет выбросов вредных веществ (углеводородов) от скважин

7.2.3 Расчет выбросов вредных веществ от свечи рассеивания

7.2.4 Основные мероприятия по охране природной среды

7.2.5 Охрана недр при эксплуатации скважин, оборудованных ЭЦН

7.3 Оценка и прогнозирование чрезвычайных ситуаций

7.3.1 Описание возможных аварийных ситуаций

7.3.2 Характеристика мероприятий по защите персонала промышленного объекта в случае возникновения ЧС

ВЫВОДЫ

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ


ВВЕДЕНИЕ

Западно-Сибирская провинция – наиболее крупная из всех нефтегазоносных провинций, выделенных на территории России. Расположенная на обширной равнине между горными сооружениями Урала на западе и Сибирской платформой на востоке, ограниченная на юге Алтае-Саянской горной системой, она охватывает земли Тюменской, Томской, Новосибирской и Омской областей.

Западно-Сибирская провинция занимает ведущее место в России как по величине выявленных в ее пределах запасов углеводородов, так и по уровню нефти и газа. Будучи самой молодой из провинций, имеющих развитую нефтедобывающую промышленность, она за короткий промежуток времени вышла на первое место по основным показателям. Объем начальных разведанных запасов нефти Западной Сибири составляет более 60% общероссийского, текущих – более 70%. Ежегодная добыча нефти в регионе составляет порядка 70% суммарной по России.

Отличительной особенностью сырьевой базы Западно-Сибирской нефтегазоносной провинции является наличие большого числа крупнейших месторождений. К настоящему времени здесь выявлены и разрабатываются такие месторождения-гиганты как Самотлорское, Мамонтовское, Федоровское, Приобское. Быстрый ввод крупнейших месторождений в промышленную разработку явился определяющим фактором, позволившим в рекордно короткие сроки создать на территории Западной Сибири мощный нефтедобывающий комплекс.

Опыт показал, что для увеличения эффективности и надежности работы УЭЦН, извлечения дополнительной нефти при нарастающей обводненности, одной из важных задач является обеспечение работ насосных установок в оптимальном режиме, обеспечивающем минимальные энергетические затраты, возможно больший межремонтный период работы оборудования, а также повышения коэффициента эксплуатации.

Цель работы - провести анализ работы и оптимизацию скважин, оборудованных УЭЦН на Южно-Ягунском месторождении НГДУ «Когалымнефть» ЦДНГ-1, которое по объему начальных запасов относится к разряду крупных.


1. Общая часть

1.1 Характеристика района работ

Южно-Ягунское нефтяное месторождение находится в северо-восточной части Сургутского нефтегазоносного района и расположено в северо- восточной части города Сургута, в 75 км от него и в 60 км на юго-запад от города Ноябрьска. В непосредственной близости от месторождения проходят железная дорога Сургут - Уренгой и трасса газопровода Уренгой - Челябинск.

В орогидрофическом отношении рассматриваемый район представляет собой пологую озерно-аллювиальную равнину южного склона Сибирских увалов, абсолютные отметки которой колеблются от 110...120 км на севере, до 70...75 км на юге. Гидрографическая сеть представлена реками субмеридиального направления:

· Ингу-Ягун,

· Кирил-Выс-Мун,

· Глунг-Ягун и другие.

Для них характерны меандры, большое количество стариц и мелких притоков, песчаных перекатов и завалов леса. Первая и вторая надпойменные террасы достигают высоты соответственно 8 и 15 м. Ширина рек колеблется от 5-10 до 30 м, на 2 - 3 м.

Реки покрываются льдом в третьей декаде октября, глубина промерзания рек 0,35 м до 1,0 м. В конце декабря лед становится прочным и возможно безопасное передвижение гусеничного транспорта. Ледоход на реках начинается в середине мая.

Широко распространены болота и озера, которые являются составной частью грядковоозеркового комплекса микроландшафтов.В летнее время болота не проходимы для колесного транспорта, зимой часто встречаются непромерзшие участки (болотные речки "живуны"), что представляет собой значительные трудности для передвижения техники, при транспортировке оборудования, при строительстве буровых.

Заселенность площади составляет около 15% и находится в зоне средней тайги с преобладанием хвойных пород. Основные массивы лесов (кедр, лиственница, сосна) сосредоточены на приподнятых участках и на речных террасах. На водораздельных участках господствуют болота с отдельными островками карликового леса (сосна, береза).

Климат района резко континентальный с холодной, суровой зимой и коротким, но теплым летом. Среднегодовая температура зимой -23,20 С, летом +16,10 С. Устойчивый снежный покров образуется в третьей декаде октября и держится 200-220 дней. Толщина снежного покрова на отдельных участках не превышает 1,0 м, в заселенных местах до 1,2-1,6 м. Глубинапромерзания составляет 1,3-1,7 м.


Рисунок.1.1. Схема размещения нефтяных (1), нефтегазовых (2) и нефтегазоконденсатных (3) месторождений Сургутского нефтегазоносного района

Лето короткое, относительно теплое (среднемесячная температура +16,1С). Максимальная температура самого жаркого месяца – июля достигает +35 С. Количество атмосферных осадков в год составляет 482 мм, причем 75% приходится на теплое время года.

Преобладающее направление ветров в теплый период – северное и северо-восточное, а в холодный – южное и юго-западное.

Район относится к слабонаселенным, но с развитием нефтебобывающих и строительных работ за последние годы численность населения постоянно увеличивается за счет приезжающих из других областей и республик. Коренное население – ханты и манси.

На территории месторождения разведано 6 карьеров песков пылеватых, мелкой и средней крупности, что может быть использовано при строительстве дорог. Крупные месторождения песка, глин и песчано-гравийных смесей открыты в пределах Холмогорского месторождения и г. Ноябрьска.

На территории Южно-Ягунского месторождения имеется густая сеть внутри- и межпромысловых дорог, линий электропередач и трубопроводов различного назначения. Электроснабжение выполнено по высоковольтной линии ВЛ-110. На месторождении построены трансформаторные подстанции ПС 110/35,ПС 36/6.

Ближайшие месторождения:

· Когалымское,

· Холмогорское,

· Дружное.

1.2 История освоения месторождения

Основанием для постановки поисково-разведочного бурения на рассматриваемой площади послужило наличие положительной структуры, промышленная нефтеносность Когалымского, Савуйского, Фёдоровского и других соседних поднятий.

Бурение на площади начато в конце 1971 года.. Первая поисковая скважина №51 была заложена в сводовой части Ягунской локальной структуры, выявленной в результате площадных сейсморазведочных работ. Целевым назначением скважины являлось изучение нефтегазаносности юрских и нижнемеловых отложений, уточнение геологического строения Ягунской структуры.

В Сургутском и смежных районах в процессе нефтепоисковых работ были выявлены крупные скопления нефти, связанные антиклинальными ловушками (Южно-Сургутское, Повховское, Фёдоровское, Дружное)

В конце декабря 1975 года был утверждён геологический проект глубокого бурения на Южно-Ягунской площади. Для решения поставленных задач проектом предусматривалось заложение 3-х глубоких поисковых скважин №83, №84, №85, расположенных профилем меридионального, секущим предполагаемую заливообразную зону распространения коллекторов пласта БС10.

Разведочное бурение на месторождении было начато в мае 1979 года. Бурение было сосредоточено в центральной части и Южной Ягунской структуры. Скважины располагались по двум профилям:

1.Сумберидионального простирания (скв. №54, №56, №57) проходит параллельно оси Ягунского поднятия.

2.Субширотное направление и ориентируется по оси структурного выступа, осложняющего западное крыло Ягунской структуры. Расстояние между скважинами на профилях 2,5-9 км. Скважины меридионального профиля бурились последовательно с юга на север. В скважине №55, №84 при испытании пласта БВ8 получены притоки пластовой нефти. Это дало основание предположить в сводах локальных структур наличие небольших залежей нефти.

Стало ясно, что пласт ЮС1 не может являться базисным горизонтом разведки. Имеющийся материал дал основание базисным считать группу горизонтов БС10-11.

Результаты бурения скважин показали, что горизонт БС11 делиться на 2 пласта: 1БС11, 2БС11, а горизонт БС10 делиться на 2 пласта: 1БС10 и 2БС10.

Таким образом, в результате проведённых геологоразведочных работ открыто крупное месторождение нефти, которое находится в близи от разрабатываемых Повховского, Ватьёганского, Южно-Сургутского месторождений. Выявлены залежи нефти промышленного значения в пластах, ЮС1,1БС10, 2БС10, 1БС11, 2БС11.


2.ГЕОЛОГИЧЕСКАЯ ЧАСТЬ

2.1 Краткая геолого-физическая характеристика месторождения

2.1.1 Стратиграфия

Геологический разрез Южно-Ягунского месторождения представлен породами двух структурных комплексов: мезозоййско-кайнозойского чехла и доюрских образований (см.рисунок 1.1).

Палеозойский фундамент. На Южно-Ягунском месторождении породы фундамента не вскрыты. В целом по Сургутскому своду породы вскрытой части фундамента представлены эффузивами. Зеленоватые и вишнево-бурые миндалекаменные диабазовые порфириты предположительно триассового возраста вскрыты Сургутскими скважинами 51 и 52 и Федоровской скважиной 131. В верхней части эффузивов залегает кора выветривания, толщина которой несколько десятков метров.

Юрская система. Нижне-среднеюрский отдел (тюменская свита) представлен чередующимися прослоями сероцветных песчаников, алевролитов и аргиллитов с обилием обугленного растительного детрита. Отдельные прослои и пачки аргиллитов, сильно обогащенные углистым детритом, переходят в прослои бурых углей. Нефтеносность отложений тюменской свиты на данном месторождении не установлена. По спорово-пыльцевым комплексам возраст пород определяется как триассовый. Вскрытая толщина тюменской свиты около 400 м.

Верхнеюрский отдел (васюганская, георгиевская, баженовская свиты). Нижняя подсвита васюганской свиты представлена аргиллитами темно-серого цвета, тонкослоистыми, известковистыми до переходящими в известняк, иногда здесь встречаются прослои битуминозных аргилитов. Верхняя часть васюганской свиты сложена песчаниками и алевролитами темно-серыми, мелко-зернистыми, слюдистыми глинистыми, слабоизвестковистыми с подчиненными прослоями аргилитов.

К отложениям подсвиты приурочен горизонт ЮС1, верхняя часть которого является промышленно-нефтеносной. Индексирована, как пласт ЮС1-1 и выделена в объект подсчета.Возраст осадков васюганской свиты – верхнекелловый–оксфордский, установлен по фауне аммонитов и фораманифер. Мощность всей свиты в целом – 75 - 80 м, верхней подсвиты – 30 – 35 м.

Отложения георгиевской свиты представлены аргиллитами темно-серыми, почти черными с зеленоватым оттенком (за счет присутствия глауконита), иногда встречаются прослои известковистого песчаника. Аргиллиты очень плотные, иногда известковистые, переходящие в глинистый известняк. В аргиллитах георгиевской свиты встречаются прослои, обогащенные обломками спикул губок настолько, что визуально порода похожа на песчаник. Породы георгиевской свиты содержат фауну кимериджского возраста. Мощность свиты редко превышает 4 - 5 м, иногда сокращается до 0.8 - 1.0 м.

Породы баженовской свиты являются одним из самых выдержанных литологических и стратиграфических реперов и представлены буровато-черными тонкоплитчатыми аргиллитами с тонкими прослоями глинистого листоватого материала и известняков, с вкраплениями пирита, с большим количеством органического материала. Они содержат многочисленные обломки раковин аммонитов, пелиципод. Возраст аргиллитов баженовской свиты - волжский. В самой кровле встречена фауна бериасского яруса. Мощность баженовской свиты – 24 - 30 м.

Меловая система. Нижнемеловый отдел (мегионская, вартовская, алымская и нижняя часть покурской свиты).

Мегионская свита имеет пятичленное строение. Низы свиты образовывает подачимовская пачка темно-серых, почти черных аргиллитов, участками битуминозных. Выше залегает ачимовская толща, не имеющая повсеместного распространения, представленная песчаниками светло-серыми, мелко-зернистыми, карбонатными. К ней приурочены песчаные пласты БС16 – БС22, с которыми связана промышленная нефтеносность на Сургутском своде. В пределах Южно-Ягунского месторождения признаки нефтеносности обнаружены при опробовании скважин 103р (пл.БС18) и 110р (пл.БС16). Выше залегают темно-серые аргилитоподобные глины, плитчатые, слюдистые с прослойками и линзами светло-серого песчаного материала. Следующая пачка представлена чередованием аргиллитов, песчаников и алевролитов. К этим отложениям приурочены песчаные пласты БС12 – БС10. Установлена промышленная нефтеносность пластов БС10-1, БС10-2, БС11-1, БС11-2. Завершает разрез мегионской свиты пачка аргиллитов темно-серых, плотных, слабо алевритистых. На Сургутском своде эта пачка имеет региональное распространение и стратиграфической схеме выделена как чеускинская. В породах мегионской свиты встречена фауна аммонитов и фораминифер бериасского и валанжинского ярусов. Толщина свиты 470-510 м.

Вартовская свита представляет собой толщу переслаивания песчаников и алевролитов, аргиллитов и аргиллитоподобных глин.Свита делится на две части: нижнюю, включающую пласты группы БС1-БС9, и верхнюю – с пластами АС4 – АС11. Все эти пласты на Южно-Ягунском месторождении водонасыщены. Раздел между ними – пимская пачка темно-серых, однородных аргиллитоподобных глин. В пределах нижней подсвиты выделяется сармановская пачка, которая является зональным репером в пределах широтного Приобья. Отличием отложений верхней и нижней подсвит являются условия их формирования. Осадки нижней подсвиты накапливались в условиях открытого морского бассейна, о чем говорят остатки фауны аммонитов и фораминифер. По литологическому составу породы нижней подсвиты вартовской свиты в пределах описываемого месторождения имеют значительные сходства с породами мегионской свиты. Наиболее существенным отличием является обеднённость комплексов встреченной фауной и несколько повышенная глинистость песчаников и алевролитов.

Верхняя подсвита формировалась в условиях мелководья или даже в замкнутых континентальных бассейнах. Подтверждением этому служит состав, окраска пород, а также комплекс органических остатков. Довольно редкие комплексы фораминифер встречаются в нижней части верхней подсвиты. В верхней же части встречаются остатки пресноводных остракод и пелеципод. Вмещающие фауну аргиллитоподобные глины серые, зеленовато-серые до зеленых, с неясновыраженной слоистостью, вверху комковатые, перемятые с зеркалами скольжения. Отличительной чертой песчаников и алевролитов является слабая отсортированность обломочного материала и цемент, в составе которого значительную роль играет каолинит.Возраст вартовской свиты принимается по схеме как валанжин-барремский, причем нижняя подсвита датируется валанжин-готеривской, а верхняя - готерив-барремской. Мощность вартовской свиты достигает 400 м.

Алымская свита представлена глинистыми породами темно-серыми, почти черными с прослойками и линзами алевролитов. Мощность свиты 120 м.

Покурская свита объединяет верхи нижнего и низы верхнего отделов меловой системы. В покурской свите выделяются две подсвиты. Нижняя – наиболее глинистая и верхняя – с преобладанием песчано-алевритовых пород. Фауной отложения не охарактеризованы. На крайнем западном и юго-западном склонах Сургутского свода аналогом возрастным покурской свиты являются две свиты - нижняя, преимущественно глинистая альбского возраста (ханты-мансийская) и верхняя - в основном песчано-алевритовая (уватская), относимая к сеноману. Толщина свиты 800 м.

Верхний отдел меловой системы (кузнецовская, березовская, ганькинская свиты). Кузнецовская свита в нижней части представлена глинами темно-серыми, почти черными туронского яруса, которые выдержаны по площади и разрезу и являются региональным репером в пределах Западной Сибири. Вверх по разрезу глины меняют окраску до серых. Глины обогащены фауной фораминифор, иноцерамов, бакулитов и др. Толщина свиты 23 – 26 м.

Березовская свита расчленяется на две подсвиты: нижнюю и верхнюю. Нижняя посвита сложена голубовато-серыми, плотными, слабоглинистыми опоками и темно-серыми глинами с остатками фауны. Верхняя подсвита представлена зеленовато-серыми, опоковидными глинами. Толщина свиты 150 – 175 м.

Ганькинская свита завершает разрез отложений меловой системы. Представлена глинами серыми и зеленовато-серыми, известковистыми до известковых, переходящими в мергелит. В породах встречается глауконит, фауна фораминифер маастрихтского яруса. Толщина ганькинской свиты 110 – 120 м.

Палеогеновая система. Палеогеновый отдел (талицкая свита) сложен монтмориллонитовыми глинами, темно-серыми, плотными, аргиллитоподоб-ными. Толщина свиты 80 – 100 м.

Эоценовый отдел (люлинворская свита) представляет собой толщу глин, в нижней части опоковидных, в верхней диатомовых, переходящих в диатомиты. По возрасту эти отложения относятся к нижнему-среднему эоцену, толщина отложений свиты 180 – 210 м.

Верхний эоценовый – нижний олигоценовый отделы (тавдинская свита) сложены глинами алевритистыми. Толщина свиты до 180 м.

Средний олигоценовый отдел (атлымская, новомихайловская свиты). Атлымская свита представлена песками кварцевыми, разнозернистыми с прослоями линзовидных включений песчанистых глин. Толщина свиты до 50 м.

Новомихайловская свита представлена глинами серыми, коричневато-серыми, зеленовато-серыми, с включениями слабоуплотненных алевролитов и бурых углей. Толщина отложений свиты до 30 – 60 м.

Верхний олигоцен (туртасская свита) представлен алевритами, песками и глинами. Пески и алевриты кварцевые с включениями зерен глауконита. Толщина свиты 40 – 70 м.

Неогеновая система . Отложения неогена развиты не повсеместно и керном не охарактеризованы.

Четвертичная система. Отложения системы развиты повсеместно и представлены суглинками, супесями, песками и глинами пойменных и озерно-болотных фаций. Толщина отложений 15 – 30 м.

2.1.2 Тектоническое строение

Для геологического строения Западно-Сибирской плиты характерно наличие трех структурно-тектонических этажей. Степень изученности их различна, т.к. нижний и средний пока исследованы недостаточно полно, а верхний, с которым связано большинство скоплений углеводородов, охарактеризован в значительно большей степени, как геофизическими методами, так и глубоким бурением.

Нижний этаж, или фундамент, сформировавшийся в палеозойское и допалеозойское время, представлен эффузивными, изверженными или сильно дислоцированными осадочными и метаморфическими породами. Он связан с геосинклинальным этапом развития плиты.

Средний этаж объединяет породы, сформировавшиеся в пермотонасовое время в условиях пара геосинклинали. В отличие от нижнего этажа, эти породы менее дислоцированы и имеют меньшую степень метаморфизма.

Верхний этаж образовался в мезо-кайнозойское время в условиях устойчивого прогибания фундамента. Он характеризуется слабой дисло-цированностью и практически полным отсутствием метаморфизма пород. Эти отложения слагают собой осадочный чехол Западно-Сибирской плиты. По данным КМПВ и высокоточной аэромагнитной съемки, рельеф фундамента имеет общее погружение на север и разбит на блоки преимущественно субмеридионального простирания. Породы пермо-триаса, унаследовав от нижнего этажа северное региональное погружение, несколько сглаживают его резко расчлененный рельеф.

При описании структурно-тектонического строения района Южно-Ягунского месторождения по верхнему этажу, за основу использована “Тектоническая карта мезозойско-кайнозойского платформенного чехла Западно-Сибирской плиты” (редактор- И.И. Нестеров, 1975г.). Согласно данной карты, исследуемая площадь расположена на северо-восточном погружении Сургутского свода, которое осложнено структурой II порядка - Ягунским куполовидным поднятием (к.п.). На севере оно граничит с Северо-Сургутской моноклиналью, на востоке и юго-востоке, через Южно-Ягунскую котловину, с Ватьеганским к.п., а на западе, через относительно неглубокий прогиб, с Тевлинским к.п., также осложняющим восточное погружение Сургутского свода.

По результатам более детальных сейсморазведочных работ (м 1:100000 и 1:50000), для площади Южно-Ягунского месторождения была построена структурная карта по отражающему горизонту “Б” (верхняя юра), связанному с региональным сейсмическим и геологическим репером в Западной Сибири (битуминозные аргиллиты баженовской свиты берриас- волжского возраста).

В таблице 1.1 приводится сопоставление глубин залегания данного репера по результатам бурения и данным сейсморазведки по горизонту “Б”:

Таблица 2.1 Сопоставление глубин залегания репера и данных сейсморазведки по горизонту «Б»

№ скв.

а.о. отраж. гор.”Б” по сейсмике а.о кровли бажен. свиты.по бурению

H=Hбаж .-H“Б”

H= Hi - Hср .

H2 =

H“Б”, м Hбаж ., м H, м м м
52 2750 2760 -10 -9 81
53 2760 2761 -1 0 0
55 2710 2720 -10 -9 81
56 2725 2723 +2 +3 9
58 2732 2733 -1 0 0
63 2695 2712 -17 -16 256
67 2715 2717 -2 -1 1
75 2726 2729 -3 -2 4
77 2750 2747 +3 +4 16
79 2743 2749 -6 -5 25
80 2702 2700 +2 +3 9
84 2715 2718 -3 -2 4
85 2770 2767 +3 +4 16
91 2748 2744 +4 +5 25
92 2725 2724 +1 +2 4
99 2755 2756 -1 0 0
103 2700 2699 +1 +2 4
105 2765 2747 +18 +19 361
110 2725 2721 +4 +5 25
-1 + 6,96м

Из таблицы следует, что среднеквадратичная погрешность определения глубин по данным сейсмических работ на площади Южно-Ягунского месторождения равная +6,96, позволяет достаточно надежно использовать сейсмическую карту по отражающему горизонту “Б” в качестве основы для структурных построений по продуктивным пластам. Об этом свидетельствует серия карт, построенных по кровле мегионской, вартовской, алымской, покурской, ганькинской и талицкой свит. Анализ этих карт указывает на унаследованный характер структурных планов с постепенным выполаживанием вверх по разрезу.

По отражающему горизонту “Б” площадь Южно-Ягунского месторождения включает группу структур III порядков: Ягунское, Южно-Ягунские (две), Дружное локальные поднятия, которые разделяются неглубокими (20-25м) прогибами и седловинами.

Ягунское и Южно-Ягунское (I) локальные поднятия по отражающему горизонту «Б» представляют собой брахиантиклинальные складки субмеридианального простирания, оконтуренные изогипсой –2725 м, имеющие размеры в пределах данных изогипс соответственно 18 * 19 и 7,5 * 3,5 км, амплитуда – 39 и 12 м; углы наклона крыльев составляют первые единицы градусов.

Южно-Ягунское (II) локальное поднятие по отражающему горизонту “Б” представляет собой брахиантиклинальную складку изометрического простирания, размеры которой 4,5 * 4 км, амплитуда 15 м, углы наклона крыльев менее 1 градуса.

Дружное локальное поднятие по отражающему горизонту «Б» представляет брахиантиклинальную складку субмеридианального простирания, размером 15,0 * 6,5 км, амплитудой 33 м; углы наклона крыльев менее 1 градуса.

Эксплуатационное разбуривание, в основном, подтвердило представление о тектоническом строении месторождения, выявленное по разведочным скважинам. Структурные планы по кровле основных продуктивных горизонтов Южно-Ягунского месторождения и отражающему горизонту «Б» сходны между собой, отличаясь лишь глубинами залегания, амплитудами поднятий и углами падения слоев. Краткая характеристика этих структурных элементов приведена в таблице 2.2

Таблица 2.2 Характеристика структурных элементов Южно-Ягунского нефтяного месторождения

Название структуры Замыкающая сейсмоизогипса,м Простирание, форма Размеры, км Амплитуда, м Углы падения крыльев от-до
Ягунское -2725 Субмери-диан-е. 18x 19 39 1 10 -17
Южно-Ягунское, -2725 - “ - 7,5x3,5 12 34 - 8
Южно-Ягунское, II -2725 Изомет-рическое 4,5x4 15 52 - 28
Дружное -2730

Субмери-

диан-е.

15x6,5 33 52 - 17

Как отмечалось выше, структурные планы по кровлям коллекторов продуктивных пластов горизонтов БС10 и БС11, в основном, повторяют структурные особенности карты по отражающему горизонту “Б”. Наличие в пределах месторождения ряда мало амплитудных поднятий определило во многом распределение по площади залежей в условиях неполного заполнения крупных структурных ловушек.

Из-за больших размеров, приведем только небольшую часть структурной карты продуктивного пласта БС10-1. На рис. 2.1 представлена структурная карта участка блока N 13 ( район скв. 684 – 688, 2231 – 2234), т.е. тот блок, где предполагается проведение работ по улучшению нефтеотдачи пласта. Структурная карта представляет собой изображение в горизонталях (изогипсах) рельефа и построена по кровле пласта БС10-1. Она дает четкое представление о строении выбранного горизонта, обеспечивает наиболее точное проектирование разведочных и эксплуатационных скважин, облегчает изучение изменения свойств по площади продуктивного горизонта (мощности, пористости, проницаемости), помогает определить границы залежи и распределение давлений. За базисную поверхность при построении этой



Рисунок 2.1. Структурная карта по поверхности пласта БС10-1. Масштаб 1: 25000

структурной карты принят уровень моря, от которого производятся отсчёты горизонталей (изогипс) глубинного рельефа.

Южно-Ягунское месторождение расположено в северо-восточной части Сургутского нефтегазоносного района (НГР) Среднеобской нефтегазоносной области. Промышленная нефтегазоносность Сургутского НГР - одного из основных по запасам нефти в Западной Сибири, подтверждена открытием таких крупнейших месторождений, как Усть-Балыкское, Мамонтовское, Федоровское и др. Залежи нефти и газа открыты и разведаны в отложениях тюменской свиты (Федоровское, Тепловское), васюганской свиты (Когалымское), баженовской свиты (Малобалыкское, Соимлорское и др.), ачимовской толщи (Малобалыкское, Среднебалыкское, Нятлонгское, Суторминское), в группах пластов БС и АС мегионской и вартовской свит (Федоровское, Усть-Балыкское, Холмогорское, Лянторское и др.). Таким образом, этаж нефтегазоносности в рассматриваемом районе охватывает комплекс осадочных пород нижне-среднеюрско-аптского возраста и составляет 1,5-2 км. Из числа пробуренных на данный период, 19 скважин вскрыли юрские отложения, а одна - отложения палеозойского фундамента (скв.52, забой 3353м).

На месторождении базисным объектом разработки является группа продуктивных горизонтов БС10 и БС11 (валанжин). Подчиненную роль имеет залежь пласта Ю (верхняя юра). Из ачимовской толщи (берриас-валанжин, пласты БС16 и БС18) получены небольшие притоки нефти и нефти с водой (соответственно скв.103 и 110), что указывает на ее нефтеносность.

На кривой ГСР в разрезе горизонта БС10 можно выделить два пласта (БС10-1 и БС10-2), тоже и в горизонте БС11, индексируемые как БС11-1 и БС11-2 Об особенностях взаиморасположения пластов можно судить по геологическим профилям рисунке. 2.3 и рисунке. 2.4


Рисунок 2.3. Геологический профиль С – Ю пластов БС10 и БС11:

1 – нефтенасыщенный песчаник;

2 – водонасыщенный песчаник;

3 – глинистые прослои



Рисунок 2.4 Геологический профиль З – В пластов БС10 и БС11. Условные обозначения те же, что и для рисунка 2.3

Продуктивные горизонты БС11 и БС10 отделяются друг от друга пачкой глин толщиной 36 - 40 м. В горизонте БС11 выделяются пласты БС 11-1 и БС11-2, разделенные между собой глинистым прослоем, толщина которого колеблется от 1 до 10 м. Совмещение контуров нефтеносности этих пластов (см. рисунок 2.5) показывает резкое уменьшение площади нефтеносности пласта БС11-1 по сравнению с пластом БС11-2.



Рисунок 2.5. Совмещение контуров нефтеносности пластов БС11-1 и С11-2: 1 – скважины разведочные; 2, 3 – внешние контуры нефтеносности пластов БС11-1 и БС11-2 соответственно

Основной из них пласт БС11-2 вскрыт на глубине 2416-2507м. Залежи пласта БС11-2 пластово-сводовые с элементами литологического экранирования. В ходе эксплуатационного разбуривания выявлено несколько зон отсутствия коллекторов. Выделяемые пласты БС11-1 и БС11-2, сложены песчаниками средне- и мелкозернистыми и алевролитами крупно-зернистыми. На глубине 2390-2422 м. вскрыт пласт БС11-1, к которому приурочены две пластово-сводовые литологически экранированные залежи Северная и Южная, между которыми находится обширная водонасыщенная зона. Пласт БС11-2 имеет среднюю пористость 21 %, проницаемость 0,123 мкм. кв. Диапазон изменения нефтенасыщенных толщин от 11,2 до 17,2 м. Наибольшие толщины вскрыты в центральной и северной частях основной залежи. Средняя нефтенасыщенная толщина 5,6 м. Коллекторские свойства пласта БС11-1 довольно высокие, пористость изменяется от 19 до 23%. Проницаемость в среднем равна 0,069 мкм.кв. Нефтенасыщенные толщины изменяются в пределах от 0,6 до 7,2 м. (средняя 2,9 м.)

В продуктивном горизонте БС10 выделяются два пласта. Отложения пласта БС10-2 вскрыты на глубине 2360-2455 м. Залежь пласта - сводовая литологи-чески экранированная. Пласты БС10-1 и БС10-2 сложены песчаниками и алев-ролитами. Песчаники серые, преимущественно мелкозернистые, алевритистые до алевритовых, переходящие в алевролит, глинистые, по составу аркозовые, цемент порово-пленочный, гидрослюдисто-хлоритовый и хлоритовый. Залежь пласта БС10-1 относится к пластово-сводовому типу. Отложения пласта вскрыты на глубине 2350-2395 м. Между собой пласты БС10-1 и БС10-2 разделены преимущественно глинистым прослоем, толщина которого изменяется от 1 до 10 м. Контуры нефтеносности основной залежи пластов совпадают (рисунком 2.6).



Рисунок 2.6. Совмещение контуров нефтеносности пластов БС10-1 и БС10-2: 1 – разведочные скважины; 2, 3 – внешние контуры нефтеносности пластов БС10-1 и БС10-2 соответственно

Коллекторские свойства пласта БС10-1 колеблются в широких пределах - пористость от 16 до 24,8 % (средняя 21-22 %), проницаемость от 0,002 до 0,086 мкм. кв. Максимальные нефтенасыщенные толщины встречаются в центре залежи. Средняя толщина пласта 3,6 м. Пласт БС10-2 отличается более высокими коллекторскими свойствами - пористость 18 - 25 % (средняя 22,9 %), проницаемость 0,002 - 0,527 мкм. кв. (средняя 0,263 мкм. кв.). Нефтенасыщенная толщина изменяется от 0,8 до 15,6 м. (средняя 3,8 м.) Характерно уменьшение этого параметра с севера на юг.

Из приведенных данных становится ясно, что лучшими коллекторскими свойствами обладают пласты БС10-2 и БС11-2. В настоящее время базисными объектами для разработки являются продуктивные горизонты БС10 и БС11. Залежь пласта ЮС-1 имеет подчиненное значение. Пласт ЮС-1 вскрыт на глубинах 2818 - 2842 м., к нему приурочены локальные пластовосводовые залежи. Он представлен пачкой переслаивающихся песчаников и алевролитов с подчиненными прослоями глинистых алевролитов. Песчаники мелкозернистые, глинистые. Цемент порово-пленочный, глинистый, хлоритово-гидрослюдистый.

Таблица 2.3 Геолого – физическая характеристика основных объектов разработки месторождения

Показатели

Продуктивные пласты
БС10-1 БС10-2 БС11-1 БС11-2 БС16 БС18 ЮС1
Год открытия 1979 1979 1979 1979 1982 1983 1980
Возраст отложений Н. мел Н. мел Н. мел Н. мел Н. мел Н. мел В. юра
Глубина залегания. м 2540 2555 2427 2460 2700 2770 2870

Площадь нефтенос-

ности, м2 .

121696 286842 62129 349955 4890 6862 104490
Тип залежи

Пластово-

сводовая

Пластово-сводовая

литологически экранированная

Пластово- сводовая

Тип коллектора Поровый
Нефтенасыщенная толщина пласта, м. 2,6 3,94 3 5,56 3 1,5 3,37
Пористость, % 19 22 20 22 18 18 16
Проницаемость, мкм2 0,035 0,106 0,032 0,121 0,01 0,01 0,08
Нефтенасыщенность 0,47 0,55 0,44 0,57 0,6 0,6 0,58
Коэф. песчанистости 0,7 0,83 0,57 0,68 0,64
Коэф. расчлененности 1,92 1,04 1,2 2,29

Начальное пластовое

давление, МПа

23,5 23,5 23,6 24,5 30,3

Пластовая темпера-

тура, °С

80 80 80 88 88 88 90

Как видно из таблицы 2.3, коллекторские свойства характеризуются следующими значениями: открытая пористость - 17 %, проницаемость - 0,014 мкм2 , нефтенасыщенная толщина изменяется от 2,2 до 4,8 м., средняя толщина составляет 3,3 м. В целом для продуктивных пластов месторождения характерны следующие литолого-петрографические особенности: состав алеврито-песчаных пород-коллекторов - аркозовый; цемент преимущественно порово-пленочный и пленочный; гранулометрический состав песчаников преимущественно мелкозернистый. Представление о сложности строения продуктивных пластов дают определенные в Сиб-НИИНП показатели, характеризующие их неоднородность. Из представленных результатов песчанистости и расчлененности видно, что наибольшей песчанистостью характеризуется пласт БС10-2, а наименьшей - пласт БС11-1. По коэффициенту расчлененности выделяют две группы пластов: пласты БС11-1 и БС10-1 с одним пропластком; пласты БС10-2 и БС11-2 с двумя и более пропластками, определяющими сложность строения этой группы.

2.1.4 Гидрогеология

В гидрогеологическом отношении Южно-Ягунское месторождение расположено в центральной части огромного бассейна, сложенного слоистыми осадочными породами. Гидрогеологические условия определяются наличием водоносных слоистых толщ, разобщенных водоупорными отложениями, имеющими региональное развитие. В качестве региональных водоупоров в районе месторождения выделяются:

- толща водоупорных глинистых осадков олигоцен-туронского возраста, мощностью до 750 м;

- толща аргиллитов мегионской свиты (бериас-валанжинского возраста), мощностью до 90 – 130 м.

В соответствии с этим, в гидрогеологическом разрезе региона и площади месторождения, выделены три гидрогеологических этажа. Верхний гидрогеологический этаж объединяет водонасыщенные отложения олигоцен-четвертичного возраста. Для него характерна гидравлическая связь водоносных горизонтов и комплексов с поверхностью, что определяет динамику и гидрохимию подземных вод. Условия питания, циркуляции, влияния атмосферных осадков обуславливают наличие в нем пресных подземных вод, имеющих практическое значение для хозяйственно-питьевого водоснабжения. В верхнем гидрогеологическом этаже выделяются следующие водоносные горизонты (сверху вниз):

- водоносный горизонт четвертичных отложений;

- подземные воды спорадического распространения отложений смирновской и бешеульской свит;

- водоносный горизонт в песках абросимовской свиты;

- туртасский водоносный горизонт;

- новомихайловский водоносный горизонт;

- атлымский водоносный горизонт.

Наиболее практическое значение имеют водоносные горизонты четвертичных отложений, новомихайловский и атлымский водоносные горизонты. Последние два горизонта объединяются в один куртамышский водоносный горизонт, имеющий промышленное значение для организации централизованного хозяйственно-питьевого водоснабжения. Ниже приводится краткая характеристика водоносных горизонтов.

Водоносный горизонт четвертичных отложений . Высокие положения уровня грунтовых вод четвертичных отложений определяют небольшую мощность зоны аэрации, колеблющуюся в районе месторождения от 0 до 4 м, реже до 5 – 7 м. Водовмещающими являются пески и торф с подчиненными прослоями супесей и суглинков. Общая мощность отложений от 45 до 62 м. Дебиты скважин составляют 4,7 – 17,5 л/сек при понижении 5,3 – 20,3 м. По химическому составу воды преимущественно гидрокарбонатные кальциево-магниевые с минерализацией 0,02 – 0,15 г/л.. В связи со слабым развитием окислительных процессов и мелкодисперсным составом отмечается превышение норм ПДК по марганцу в 15 – 24 раза, железу – в 4 – 8 раз, цветности – в 1,5 – 3 раза и мутности – в 2,5 – 4 раза. Воды горизонта широко используются для технического водоснабжения на промплощадках и буровых кустах.

Куртамышский водоносный горизонт . Залегает на глубине 180 – 200 м. Дебиты скважин, эксплуатирующих горизонт, колеблются от 800 до 1000 м3 /сут. при понижениях 17 – 28 м. Химический состав вод гидрокарбонатный магниево-кальцевый с минерализацией до 0,3 – 0,5 г/л, с повышенным содержанием кремнекислоты (H2 SiO3 – 92 мг/л и железа до 7 мг/л). Пьезометрический уровень 0 – 5 м. Воды горизонта используются для водоснабжения вахтовых поселков. Так подземные воды используются для централизованного водоснабжения г. Когалыма. Водозабор расположен в нескольких километрах южнее Южно – Ягунского месторождения. Подземные воды горизонта напорные, статические уровни устанавливаются на глубине в среднем 2 м. По своему качеству подземные воды пресные с сухим остатком до 0,15 г/л, содержание железа – 3,5 мг/л. По остальным компонентам превышений ГОСТ и ПДК не наблюдается.

Средний гидрогеологический этаж объединяет водоносные комплексы разреза, подземные воды которых имеют гидравлическую связь с поверхностью только на периферии структуры бассейна, а на большей части бассейна, в т.ч. и на площади Южно – Ягунского месторождения, мощными регионально выдержанными водоупорными породами изолирует подземные воды от поверхности. В разрезе в интервале глубин 970 – 2800 м выделяются:

- апт-альб-сеноманский водоносный комплекс;

- подземные воды песчаных отложений вартовской свиты (пласты АС);

- водоносный комплекс нижней части вартовской свиты и верхней части мегионской свиты (пласты БС 8 – 12).

Все они относятся к гидродинамической зоне затрудненного водообмена. Общий уклон пьезометрической поверхности – на север, в сторону Карского моря. Апт-альб-сеноманский водоносный комплекс содержит хлоридно-натриевые воды с минерализацией до 20 г/л. Дебиты скважин 30 л/сек (» 2000 м3 /сут.). подземные воды комплекса широко используются для поддержания пластового давления. Водоносный комплекс нижней части вартовсой свиты содержит продуктивные пласты БС 10 – 11. Воды напорные, производительность скважин несколько сот кубических метров в сутки, воды также хлоридные натриевые. Минерализация вод изменяется от 18,2 до 26,1 г/л, содержание ионов хлора в среднем составляет 14,6 г/л, ионов натрия и калия – 9,1 г/л (см. таблицу 2.4). Хлор-иона содержится 13475 мг/л; натрий – иона 532 мг/л. Вязкость воды рассматриваемых объектов 0,5 МПа*с. Углекислый газ, сероводород отсутствуют, сульфат-ион присутствует в незначительном количестве. Плотность воды при 20 °С составляет кг/м3 .

Таблица 2.4 Свойства пластовых вод продуктивных горизонтов «Южно-Ягунского» месторождения

Показатели Продуктивные пласты
БС10-1 БС10-2 БС11-1 БС11-2 ЮС1

Плотность, кг/м3

Общая минерализация, г/л

Вязкость, МПа*с

1015

20,1

0,5

1015

21,1

0,5

1014

20,6

0,5

1015

20,8

0,5

1018

25,4

0,5

Нижний гидрогеологический этаж осадочного чехла включает водоносные горизонты и комплексы не имеющие гидравлической связи с современной поверхностью и относится к зоне весьма затрудненного водообмена. В разрезе осадочной толщи этажа выделяются:

водоносный комплекс ачимовской толщи мегионской свиты;

водоносный комплекс верхней части васюганской свиты;

водоносный комплекс тюменской свиты и коры выветривания пород фундамента.

Падение пьезометрического уровня также происходит в северном направлении. Воды хлоридно-натриевые. Минерализация вод ачимовской толщи составляет 12,3 – 18,4 г/л, в продуктивных пластах юры минерализация воды изменяется от 26,2 до 39,2 г/см3 , содержание ионов хлора от 14,7 до 22,7 г/л, ионов натрия и калия от 10,0 до 14,8 г/л. В воде отсутствует сульфаты, углекислый газ и сероводород. Основные солеобразующие элементы – ионы натрия - 8015 – 11209 мг/л, хлора - 120568 – 17110 мг/л и гидрокарбонатного иона - 1854 – 1220 мг/л. Содержание йода – 0,84 – 4 мг/л, брома – 43,6 – 67,6 мг/л, аммония – 30 – 75 мг/л.

2.2 Коллекторские свойства продуктивных пластов

Характеристика изменения общих, нефтенасыщенных и эффективных толщин продуктивных пластов месторождения получены в результате обработки разрезов разведочных и эксплуатационных скважин.

При определении коллекторских свойств и характеристики насыщения продуктивных пластов использовались данные промыслово – геофизических, гидродинамических и лабораторных исследований кернового материала. Свойства пород по керну изучались по общепринятым методикам в ЦЛ «Главтюменьгеологии».

Открытая пористость (Кп) определялась методом насыщения, проницаемость (Кпр) фильтрацией газа на установке ГК-5. Данные о водонасыщенности получены косвенным методом центрифугирования на определенном режиме, применяемом при изучении коллекторов Западной Сибири. Полученные при этом значения связанной воды, или водоудерживающей способности пород (Квс), является комплексной характеристикой свойств пород как возможных коллекторов.

Коллекторские свойства продуктивных пластов в значительной степени определяются как вещественным составом, так и структурой порового пространства слагающих пород.

Породы-коллекторы Южно-Ягунского месторождения представлены мелкозернистыми песчаниками и крупнозернистыми алевролитами аркозового состава; в пластах 1БС10 и 1БС11 доминируют крупнозернистые алевролиты, а в пластах 2БС10, 2БС11 и ЮС1 мелкозернистые песчаники.

Коллекторские свойства по месторождению ухудшены за счет повсеместно распространенного пленочно-порового лейкоксена.

В пластах неокома фиксируется тенденция влияния зернистости и отсортированности пород на их фильтрационно-емкостные характеристики (ФЕС). Юрские и ачимовские отложения имеют низкие ФЕС даже при высокой зернистости из-за вторичных преобразований.

Продуктивный пласт ЮС1 представляет собой пачку переслаивающихся песчаников и аливролитов с прослоями аргиллитов.

Состав породообразующей части аркозовый с преобладанием полевых шпатов (55-60%) над кварцем (35-40%), невысоким содержанием обломков пород (10-12%) и примесным содержанием слюд (2-3%). Гранулометрический состав коллекторов широко варьирует в плане и по разрезу пласта. Доминируют мелкозернистые песчаники (Мd=0,12 мм), хорошо отсортированные (Sо=1,64) умеренноглинистые (Кгл=8,7%) и малокарбонатные (1,1%). Однако на коллекторские свойства пласта ЮС1 влияют и факторы: развиты процессы вторичного минералообразования железно-титанистых минералов. Лейкоксен и пирит, развиваясь в виде пленок вокруг зерен, усложняя структуру порового пространства и существенно снижают ФЕС пород.

Пористость пород равна 15,9 и 14,7%, проницаемость 16 и 5,2*10 мкм соответственно.

Продуктивный горизонт БС11 - пласты 1БС11 и 2БС11 представляют собой толщу песчано-глинистых пород. Проницаемые разности представлены мелкозернистыми песчаниками и крупно-зернистыми алевролитами, серыми, буровато-серыми, однородными с горизонтальной, наклонной и линзовидно-волнистой слоистостью, обусловленной намывами углисто-растительного и слюидистого материала по плоскостям наслоения. Состав породообразующей части аркозовый, с преобладанием полевых шпатов (50-55%) над кварцем (35-40%) и невысоким содержанием обломков пород (10-13%).

Пласт 2БС11 сложен мелкозернистыми песчаниками (Мd=0,12), хорошо отсортированными (Sо=1,46), умеренно глинистыми и малокарбонатными.

Коллекторские свойства пород пласта 2БС11 изучены по 50 скважинам с высокой плотностью – 5,6 образцов на 1 метр изученной площади. Средняя пористость коллекторов равна 19,80% проницаемость 109*10 мкм.

Продуктивный горизонт БС10 включает 2 продуктивных пласта: 1БС10 и 2БС10. Для пласта 2БС10 характерна тенденция уменьшения нефтенасыщенной толщины по направлению с севера на юг, а также уменьшение толщины по мере приблежения к внешнему контору нефтеносности.

В пласте выделено две залежи: Ягунская 36*11 км, и Южно-Ягунская 21,5*8,7 км. По составу обломочной части породы горизонта БС10 – аркозы, с преобладанием в них полевых шпатов (45-50%) над кварцем (35-45%).

Коллекторские свойства пласта 1БС10 исследованы керном по разрезу 39 скважин. Плотность анализов высокая и составляет по пористости 4.4, проницаемости 3.1, водоудерживающей способности 2.9 определений на 1 метр толщины. Пористость варьирует в широком диапазоне от 12,8 до 25,8% при средней 20,6%. Проницаемость изменяется в диапазоне от 0,1 до 1165*10 мкм, при этом Кпр – 33*10 мкм.

Коллекторы пласта 1БС10 представлены крупнозернистыми алевролитами ( Мd =0,09 мм).

Коллекторские свойства пласта 2БС10 исследованы керном по разрезу 26 скважин. Плотность анализов высокая и составляет по пористости 5.8, проницаемости 3.6, водоудерживающей способности 2.6 определений на 1 метр толщины. Пористость варьирует в широком диапазоне от 20 до 24%. Проницаемость изменяется в диапазоне от 0,5 до 682*10 мкм, при этом средней 161*10 мкм.

Таблица 2.5 Характеристика фильтрационно-емкостных свойств и параметров неоднородности строения продуктивных пластов.
Показатели БС10-1 БС10-2 БС11-1 БС11-2

Общая толщина, м

Средняя

0,2-19

5,6

0,4-36

8,6

0,1-12

3,4

0,6-54,2

16,6

Нефтенасыщ.толщ.,м

Средняя

0,1-10,6

3,5

0,3-16

4,5

0,1-9

2,6

0,2-21,4

6,4

Песчанистость

Ср.значение

0,01-1

0,63

0,01-1

0,65

0,01-1

0,36

0,01-1

0,43

Пористость

Ср. значение

0,06 – 0,26

0,16

0,05 – 0,24

0,19

0,05 – 0,21

0,14

0,04 – 0,23

0,19

Проницаемость, мД

Ср. значение

0,2 – 590

51,5

0,4 – 518

199,6

0,3 – 120

32

0,3 – 967

171

Нефтенасыщенность

Ср. значение

0,22– 0,84

0,41

0,22– 0,84

0,41

0,21 – 0,75

0,37

0,22 – 0,89

0,55

2.3 Свойства пластовых жидкостей и газов

Свойства пластовой нефти и газа Южно-Ягунского месторождения были изучены по данным исследования поверхностных и глубинных проб.

Отбор глубинных проб является наиболее ответственной операцией при исследовании скважин. Отбор проб производился после исследования скважины на различных режимах с замерами пластового, забойного и устьевого давлений, температуры, дебитов нефти и газа.

Данные свойств пластовой нефти по пластам приведены в таблице 2.6.

Таблица 2.6 Свойства пластовой нефти

Показатели 1БС10 2БС10 1БС11 2БС11 ЮС1

Давление насыщения

газом, МПа

10,42 9,73-10,65 6,3 8,6 9,0
Газосодержание, м3/т 69,64 56,79-70,32 62,12-68,6 90,78-107,3 106,9
Газовый фактор при условиях сепарации, м3/т 56,4 48,5-57,1 48,88-52,6 68,98-87,74 106,8
Обьемный коэффициент 1,19 1,16-1,18 1,19-1,22 1,251-1,316 1,284
Плотность, г/см 0,777 0,786-0,799 0,754-0,77 0,754-0,774 0,842

Обьемный коэффициент

в условиях сепарации

1,133 1,123-1,128 1,129-1,14 1,151-1,206 1,454
Вязкость,Мпа*сек 1,35 1,136-1,181 1,137-1,19 0,74-1,08 1,34

В поверхностных условиях наблюдается тенденция наличия более легких нефтей в центральной сводовой части залежи.

Физические свойства нефти по пластам приведены в следующей таблице

Таблица 2.7 Физические свойства нефти по пластам.

Пласт

Плотность

г/см

Вязкость

при 20

Выход

фракции

Содержание
серы парафин. асфальт. смол %
1БС10 0,872 17,19 45,1 0,86 2,19 3,49 6,68
2БС10 0,866 13,06 49,6 0,84 2,25 2,59 6,54
1БС11 0,861 11,29 48,1 0,78 2,24 3,26 6,74
2БС11 0,854 9,05 50,1 0,68 2,38 1,24 4,84
ЮС 1 0,833 4,36 57,1 0,44 2,33 0,45 3,50

В целом полученные данные позволяют сделать вывод о том, что вниз по разрезу нефть становится легче, с соответственным уменьшением вязкости, содержания асфальтенов, смол силикагелевых, серы и увеличением растворенного газа в нефти.

Минирализация вод по пластам характеризуется следующими значениями:

БС10 1 18,2…23,6 г/л,

БС10 2 21,0…21,3 г/л,

БС10 1 19,5…21,1 г/л,

БС11 2 18,4…22,7 г/л.

Хлор-иона содержится 13475 мг/л.

Натрий-иона 8466 мг/л,

Кальцый иона 532 мг/л.

Микрокомпоненты присутствуют в следующих количествах:

иод 0,84…4 мг/л,

бром 43,6…67,6 мг/л,

аммоний 30…75 мг/л.

Растворимый газ в основном состоит:

метан 82,4…84,6 %,

этан 3,37…4,40 %,

пропан 1,75…2,19 %,

изобутан 0,129…1,154 %,

бутан 0,526…0,55 %,

азот 4,67…8,28 %,

гелий 0,06…0,184 %,

углекислый газ 1,86 %.


3 ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ

3.1 Основные проектные решения по разработке Южно - Ягунского месторождения

Первая технологическая схема составлена СибНИИНП в 1980 году и утверждена ЦКР СССР в том же году (протокол ЦКР СССР № 803 от 01.10.1980 г.), как предварительная и рекомендована для использования при проектировании внешних коммуникаций.

В связи со значительным приростом запасов нефти СибНИИНП в 1982 году составил Дополнительную записку к технологической схеме разработки Южно- Ягунского месторождения (2).

Технологической схемой разработки Южно - Ягунского месторождения предусмотрено:

- выделение двух эксплуатационных объектов 1-2БС10 и 2БС11

- применение по каждому объекту блоковой системы разработки с 3-х рядным размещением скважин по сетке 500х500м.

- общий проектный уровень добычи нефти - 5,5 млн.т/год

- общий проектный уровень добычи жидкости - 9,96 млн.м3 /год

- общий проектный объем закачки воды - 13 млн.м3 /год

В 1983 году запасы были утверждены в ГКЗ СССР (протоколы № 9337 и № 9338 от 02.11.83 г.)

На основе этих запасов в 1984 году в ТатНИП Инефть составлена новая технологическая схема. Протоколом № 1092 ЦКР МНП от 25.07.1984 г. утверждены следующие основные положения:

- выделение трех эксплуатационных объектов (1+2БС10, 1+2БС11, Ю1) с разбуриванием их самостоятельными сетками скважин;

- применение по объектам 1+2БС10 и 1+2БС11 блоковой системы разработки с 3-х рядным размещением скважин по треугольной сетке 500х500 м; по пласту Ю1 - площадной 9-ти точечной системы заводнения по сетке 400х400 м;

- ввод в разработку пласта 1БС10, совпадающего в плане с пластом 2БС10, производить при организации самостоятельной системы заводнения на каждый пласт при совместном отборе продукции из добывающих скважин;

- общий проектный фонд 3491 скважина, в т.ч. 1986 добывающих, 878 нагнетательных, 570 резервных, 57 контрольных.

При расчетах рассматривались запасы нефти, числящиеся на балансе ВГФ на 01.01.1989 г. За технологическую основу приняты решения, рассмотренные и утвержденные ЦКР МНП, Главтюменнефтегазом, протоколами геолого - технических совещаний 1985 - 1988 гг. об отмене и размещении новых скважин. Необходимость уточнения технологической схемы (5) объясняется следующими причинами.

1. За время, прошедшее с утверждения предыдущего технологического документа, изменились представления о запасах нефти как в качественном, так и количественном выражениях. Балансовые запасы нефти в целом по месторождению сократились с 649,988 млн.т до 547,444 млн.т ( на 15,8 % ).

2. Основные пласты находящиеся в разработке 2БС11 и 2БС10 по геологическим признакам обладают высокими коллекторскими свойствами. Пласты с аналогичными свойствами на других месторождениях характеризуются значительными показателями нефтеизвлечения.

Однако, накопленная добыча нефти по высокообводненным скважинам и отдельным участкам в 2-3 раза меньше ожидаемой.

4. Из числящихся на балансе ВГФ 220,7 млн.т. содержится в пласте 1БС10. Пласт крайне неоднороден по коллекторским свойствам и принадлежит по типу к недонасыщенным нефтью коллекторам.

5. Обводненность продукции скважин объекта 1-2БС11 в предыдущие годы превышала проектную на 15-20%. Характеристика обводнения основных запасосодержащих пластов 2БС10 и 2БС11 близка к плановой и в ближайшие годы следует ожидать интенсивного обводнения первых рядов добывающих скважин. Учитывая то, что объем вовлеченных извлекаемых запасов меньше проектного, а также то, что оставшееся бурение будет размещаться в водо- нефтяных, краевых зонах, обводненность будет возрастать более быстрыми, чем предполагалось, темпами.

С целью уточнения предыдущего, с учетом новых данных, в 1990 году институтом СибНИИНП была составлена дополнительная записка к технологической схеме разработки Южно - Ягунского месторождения.

Центральной комиссией по разработке утверждены следующие принципиальные положения:

- проектный уровень добычи нефти - 9.451 млн.т.

- проектный уровень жидкости - 24.1206 млн.м.

- проектный объем закачки воды - 30.5802 млн.м

- общий фонд скважин за весь срок разработки - 3323 шт.

- фонд скважин для бурения всего - 1047 шт.

- на основной залежи сохранить проектную сетку скважин.

- предусмотреть в более поздние этапы разработки переход на блочно - замкнутую систему по объектам 1+2БС10, 1+2 БС11;

- применение для пласта ЮС1 площадной семиточечной системы разработки с расположением скважин по сетке 500х500м;

На месторождении реализуется блоковая система разработки с 3-х рядным размещением скважин. Общее количество блоков заводнения в настоящее время достигло 18. Естественно, блоки отличаются как по своим геологическим условиям, так и по степени разбуренности и темпам разработки. Кроме этого, применение двух самостоятельных сеток размещения скважин на основные пласты БС10-11 сформировало, в основном, две группы скважин:

1 группа - скважины, работающие только на один пласт (1БС10, либо 2БС10, либо 1БС11, либо 2БС11).

2 группа - скважины, работающие на два пласта (1БС10+ 2БС10, либо 1БС11+ 2БС11)

3.2 Текущее состояние разработки

По состоянию на 01.01.2002 г. на месторождении пробурено 1804 скважин всех назначений, в том числе добывающих 1376, нагнетательных-363, прочих-65. На 1.01.2002 г. фонд добывающих скважин составляет в целом по месторождению 1376 скв., в том числе по объекту БС11 - 577 скв. по объекту БС10 – 762 скв. и по объекту ЮС1- 37 скважин. Из всего фонда добывающих скважин в целом по месторождению более 35% фонда эксплуатируют совместно два и более пласта. По объекту БС10 более 43.5% фонда скважин работают совместно на пласты БС10-1 и БС10-2. По объекту БС11 совместно работающие скважины составляют около 23%. Фонд нагнетательных скважин составляет 363, из них по объекту БС10 - 202 скважины и по объекту БС11 - 166 скважин. В 40 нагнетательных скважинах (14.7% из общего фонда) закачка воды осуществляется на два и более пластов.

Буровыми бригадами Когалымского управления буровых работ за 2001г. пробурено 1201 метра горных пород. Средний дебит одной новой скважины по нефти составил 25,8 т/сут. На 01.01 2002 года с начало разработки месторождения отобрано 90505,1т.т. нефти, что составил 81,6% от начальных извлекаемых запасов (НИЗ), при этом темп отбора от НИЗ составил 3,84%.

Средний дебит жидкости одной скважины снизился на 0,8т/сут. и составил 40,5т/сут, по нефти 12,5т/сут. При этом среднегодовая обводненность составила 69,2%. Процент падения добычи составил 1,1%

На 1 января 2002 года эксплуатационный фонд НГДУ «Когалымнефть» составил 1008 скважин, в том числе действующих - 922. Эксплуатация осуществляется механизированным способом: электроцентробежными насосами – 75%, штанговыми глубинными насосами – 25%

Динамика изменения действующего фонда и фонда добывающих скважин показана в таблице 3.1.

Таблица 3.1 Динамика действующего фонда и фонда добывающих скважин за 1995 - 2001 г.г.

Год

( на 01.02)

Фонд добывающих скважин Действующий фонд В % к 1996, скважин
скважин % от добыв. Добыв. Действ.

1996

1997

1998

1999

2000

2001

2002

1231

1236

1192

1023

1020

1009

1008

879

948

1072

918

938

908

922

71,4

76,7

89,9

89,7

91,96

89,99

91,47

100

100,4

96,8

83,1

81,9

81,9

81,9

100

107,8

122,0

104,4

103,6

103,3

104,9

Эксплуатационный и действующий фонд нагнетательных скважин составил соответственно 208 и 159, т.е. значительная часть фонда скважин находится в бездействии.

Весь действующий фонд добывающих скважин механизирован, из них 78% оборудовано ЭЦН (724скв.), 22% - ШГН (198 скв.).

Дебиты добывающих скважин изменяются в широких пределах: от0.8 м3 /сут. по жидкости и до 85 т/сут - по нефти. Средний дебит добывающих скважин в целом по месторождению составляет по нефти 18.2 т/сут, по жидкости - 52.7 м3 /сут. Текущая обводненность 65.2% (весовая). Из всего фонда побывавших в эксплуатации скважин 234 скважины достигли обводненности свыше 98%. В бездействующем фонде - 97 скв., в эксплуатации находятся 137 скважин. Скважины, находящиеся в эксплуатации с обводненностью свыше 98%, составляют 7.7% от всего действующего фонда добывающих скважин.

В целом, исключая отдельные участки, разработка пластов ведется при реализации трехрядной системы заводнения. Кроме этого, на центральных участках основных пластов БС10-2 и БС11-2 освоена приконтурная система закачки.

Разработка месторождения ведется с поддержанием пластового давления. За год закачано 14910 т.м воды. В летний период проводилось отключение ряда нагнетательных скважин с целью изменения фильтрационных потоков.

Текущая компенсация отбора жидкости закачкой составила 102.5 %, с начала разработки - 108,6%

Оценка текущих извлекаемых запасов по Южно-Ягунскому месторождению приведена в следующей таблице.

Таблица 3.2 Баланс запасов нефти Южно-Ягунского месторождения по пластам

Пласт

Нач.извлек.запас (В+С) тыс.т. Кол-во отобран. нефти, тыс.т.

Тек. извлек. запасы на 01.01. 2000г.

тыс.т.

Активные запасы

Трудноизвлекае-мые запасы

тыс.т % тыс.т. %

БС10-1

БС10-2

БС11-1

БС11-2

14013

39212

3507

49840

5352,4

36564,3

2386,8

40265,2

8660,6

2647,7

1120,2

9574,8

2641,5

1821,2

492,8

6070,4

30,5

68,8

43,8

63,4

6019,0

826,5

627,4

3504,4

69,5

31,2

56,2

36,6

Объект 1+ 2 БС10

Запасы пласта 2БС10 составляют 36,4% от извлекаемых. Залежь пласта 2БС10 является основной по запасам и удельной добыче.

Добыча нефти за год составила 2396. т.т., или 56,2% от добычи по месторождению. Дебит нефти по году составил 12,7т/с. Обводненность среднегодовая 66,8%.

Эксплуатационный фонд по пласту составил 638 скважин, в том числе совместных 46.

Действующий фонд составил - 569 скважин. За год закачено 8349 т.м воды и компенсация отбора жидкости закачкой составила 107,4%, с начала разработки 120.8%. Средневзвешенное давление по пласту составило 223,5 атм.

По пласту 1БС10 добыто за год 420.722 т.т. нефти или 9.7% от добычи по месторождению. Дебит нефти по году составил 4,5 т/сут, обводенность 50%.

Эксплуатационный фонд по пласту составил 322 скважины, в том числе совместных 130 скважин.

Действующий фонд составил 290 и увеличился на 38 скважин.

Закачано воды за год 1050.269 т.м. Компенсация отбора жидкости закачкой составила 109%, с начала разработки 141, 2%.

Средневзвешенное давление по пласту составило 222,4 атм.

Объект 1+ 2 БС11

Залежи пласта 2БС11 являются основными по запасам и удельной добыче нефти.

За год добыча нефти по объекту составила 1788 т.т. или 41,1% от добычи по месторождению. Дебит нефти по году составил 12.7 т/сут, обводненность составила 71,3%

По пласту введено 2 скважины с дебитом нефти 17,6 т/сут, обводенностью 22 %.

Эксплуатационный фонд по пласту составил 386 скважин, в том числе совместных 46 скважин.

Действующий фонд составил 353 скважины.

За год закачано воды 6537 т.м. Компенсация отбора жидкости закачкой составила 107,4%, с начала разработки 120,1%.

Средневзвешенное давление по пласту составило 227,1 атм.

По пласту 1БС11 добыто 108.8 т.т. нефти, дебит нефти по году составил 5,1 т/сут, обводенность 77,5%.

Эксплуатационный фонд по пласту составил 70 скважин, в том числе совместных 53 скважин.

За год закачено 330 т.м воды. Компенсация отбора жидкости закачкой составила 70,9%, с начала разработки 49,5 %.

Закачка воды осуществляется на южной залежи.

Объект ЮС1

По пласту ЮС1 работает 22 добывающие скважины.

За год добыто нефти 116 т.т. Эксплуатационный фонд по пласту 25 скважин.

Закачка воды начата в апреле 1999г. и до конца года закачено 24 т. м3 воды.

3.3 Анализ системы заводнения

Разработка Южно - Ягунского месторождения ведется с поддержанием пластового давления, система заводнения внутриконтурная, блоковая, трехрядная, закачка воды ведется с 1984 года.

План по закачке воды на 01.01.2002 год составил 180686 т.м, в том числе пластовой 10108 т.м, сеноманской 7138 т.м, пресной 566 т.м.

План по закачке воды выполнен и составил 101,8%.

Прирост добычи нефти за счет закачки на 01.01.2002 год составил 808.8т.тонн. В течение года было введено 17 нагнетательных скважин при плане 8 скважин.

В 2001 году закачка воды осуществлялась пятью кустовыми насосными станциями на которых установлено 30 агрегатов типа ЦНС - 180-1422, из них работающих 14 агрегатов, в резерве 16, оборудовано средствами замера типа СВУ - 200 30 агрегатов.

Закачка пресной воды велась по БКНС № 5. Сеноманская вода добывалась из 15 водозаборных скважин насосами ЭЦН-250, 360, УЭЦН-3000*160, УЭЦП- 2000* 1400 и закачивалась по БКНС- 2,4,5. По БКНС -1,3,4 - велась закачка сточной воды.

На 01.01.2002 года фонд нагнетательных скважин составил: 363 скважины, в том числе действующих - 159 скважин, в бездействии - 48 скажин, в простое - 3 скважины.

На летний и зимний периоды составлялись организационно- технические мероприятия, с целью увеличения закачки и регулирования компенсации отбора жидкости закачкой..

Система заводнения формировалась по пластам БС10; 2БС10; 1БС11; 2БС11. По пласту 1БС10 компенсация с начала разработки составила 136.4%, текущая компенсация составила 106.7%. За 2001 год закачено 1081.99 тыс.м3. воды. И 13125,809 тыс.м3 с начала разработки. Анализируя компенсацию по блокам с начала года и текущую, наблюдаем, что блоки №№ 1;2;3;4, район ЦДНГ-2 компенсация выросла с начала 2001 года на 2, а то и на 3 порядка, что связано с запуском в работу из бездействия прошлых лет нагнетательных скважин №№ 2040\9;218\9.( 3 блок), 2059\70;2061\70 (4 блок), исправление и уточнение режима нагнетательных скважин 2433\116; 2016\116 (2 блок). В летний период планируется ограничить закачку по этим блокам.

Блоки №№ 7;8;9, компенсация в течении года составила 39.1%;38.5%;73.8% соответственно. В 2002 планируется перевести под нагнетание скважины 2527\133 ( 7 блок), запустить из бездействия в работу 2552\137 ( 8 блок) и произвести ОПЗ пласта 1БС10 в нагнетательной скважине 2554\137 ( 8 блок).

Перекомпенсированная закачка по блокам №№ 10;11;12;13, ограничена путем остановки нагнетательных скважин: 2212\36 ( 11 блок), 2185\32 ( 10 блок), 2697\166 ( 12 блок), 2694\39 ( 12 блок), 2667\36 ( 11 блок), 2194\35 ( 11 блок), 2235\39 ( 12 блок).

Частично некомпенсированная закачка по 14;15 блокам объясняется неработающей скважиной 2733\50 которую планируется запустить в работу после ликвидации заколонного перетока.

По пласту 2БС10 компенсация с начала разработки составила 120.3%, текущая 123.7%. За 2001 год в пласт закачено 8935.123 тыс.м3. воды, с начала разработки 98168.542 тыс.м3. Анализируя компенсацию с начала года и текущую наблюдаем, что блоки №№ 4;5;6;7;8;9 компенсированы удовлетворительно. Каких либо отклонений в увеличении или уменьшении компенсации не наблюдается. И в 2002 году закачку по этим блокам планируется держать на уровне 2001 года.

Недокомпенсированная закачка по 10 блоку связана с бездействием скважины 2179\31. Наблюдается тенденция на увеличение компенсации выше допустимой по 11;12 блокам.

В летний период планируется остановить скважины №№ 2660\34;2204\34 ( 11 блок), 2229\37 (12 блок). Понижение компенсации со 136% и 121% до 113% и 117% по 13;14 блокам соответственно связано с закачкой в пласт СПС. Снижение компенсации по 15 блоку планируется осуществить остановкой скважин 2327\55; 2332\57; 2323\55 под циклическую закачку.

По пласту 1БС11 компенсация составила с начала разработки 52.5% по сравнению с январем 1997 год (49.4%), текущая компенсация на уровне 150%. Закачка по 1БС11 ведется по четырем блокам №№ 1;2;5;6. С начала 1997 года в пласт закачено 442.241 тыс.м3. с начала разработки 2936.536 тчс.м3.

По пласту 2БС11 закачка с начала года составила 7548.586 тыс.м3. и с начала разработки 98250.113 тыс.м3. воды.

Компенсация по пласту с начала разработки составила 101.2%, текущая 95.3%. Анализируя динамику изменения компенсации с начала 2001 года наблюдаем снижение компенсации по 16;17 блокам со 148% до 41%,и со 105% до 85% соответственно, это обусловлено остановкой скв 2373\62 и 1894\181, 2348\60 и 2774\173. Планируется увеличить компенсацию, т.е. перевести под закачку скважины №№ 2819\181; 2367\64;2779\175, и увеличить приемистость на скв:№№ 2817\180;2820\177.

Тенденция на увеличение компенсации с начала года по 15 блоку планируется ограничить путем остановки нагнетательных скважин №№ 2313\52;2315\52;2317\52 под циклическую закачку и продолжением закачки СПС по этому блоку.

Снижение текущей компенсации по 13;14 блокам до 110-105% осуществить путем остановки скважин№№ 2285\48;2283\53;2251\43 на циклическую закачку. Компенсация по блокам №№ 9;10;11;12 считается удовлетворительной. Увеличить компенсацию по 3;4;5 ому блокам в районе ЦДНГ-1 планируется путем перевода под нагнетание скважины №№ 2915\ 118, 2918\236; 2927\240; 2919\236; 2924\240. Компенсация по 1;2- ому блоку считается удовлетворительной.

Итого по пластам БС компенсация с начала года составила 109.2%, с начала разработки 109.6%,текущая 111%. С начала года закачено в пласты 18008 тыс.м3. воды с разработки 212481 тыс.м3.

Система заводнения не полностью сформировалась, так как часть нагнетательных скважин находится в отработке на нефть.

3.4 Анализ результатов гидродинамических исследований скважин и пластов, характеристика их продуктивности и режимов

На Южно - Ягунском нефтяном месторождении проводится обязательный комплекс гидродинамических исследований скважин. Он включает замеры:

- дебитов добывающих скважин,

- приемистости нагнетательных скважин,

- забойных и пластовых давлений,

- динамических и статических уровней жидкости в добывающих скважинах,

- статических уровней в нагнетательных скважинах,

- прослеживание восстановления уровня жидкости (КВУ),

- прослеживание восстановления давления (КПД).

Эти исследования проводятся цехом ЦНИПР НГДУ “Когалымнефть” с целью контроля за текущим состоянием разработки.

По стволу скважин проводится комплекс геофизических исследований в нефтяных и нагнетательных скважинах. Объемы работ проводились ОАО «Когалымнефтегеофизика».

Основная часть исследований приходится на контроль за энергетическим состоянием залежей, определение добывных возможностей скважин и пластов, замер дебитов добывающих и расхода нагнетательных скважин, изучение профилей притока и приемистостей.

Замеры пластового давления в скважинах служат основой для потроения карт изобар.

Результаты исследования скважин, выполняемые на месторождении, в основном качественные и пригодны для использования.

В таблице 3.3. приведены основные результаты исследований скважин и пластов. Необходимо отметить, что по основным объектам даны показатели, рассчитанные по скважинам, охваченных исследованиями.

Разработка всех залежей объектов осуществляется с поддержанием пластового давления с начала эксплуатации. Режим залежей характеризуется как жесткий водонапорный.


Таблица 3.3 Результаты исследования скважин и пластов

Наименование 1БС10 2БС10 1БС11 2БС11 ЮС1
Средневзвешенное пластовое давление, атм 219,0 228,4 218,0 232,0 234,2
Пластовая температура, ºС 71 73 80 82 83
Ср.дебит нефти, т/сут 16,4 35,6 27,8 33,6 3,5
Обводненность весовая, % 34 25,4 46 40,4 67,1
Газовый фактор, м3 53 45 46 72 83
Коэффициент продук-тивности, м3 /сут*атм 0,25 0,389 0,18 0,375 0,072
Гидропроводность, мкм/мПа*с 1,75 32 50,7 50,7 1,56
Проницаемость, мкм 14 117 39 101 14

Объем исследованных скважин для определения коэффициента продуктивности составляет 13% от всего пробуренного фонда. При расчетах были учтены коэффициенты продуктивности по результатам опробования скважин.

По Южно - Ягунскому месторождению были проанализированы данные исследований 23 нагнетательных скважин по пласту 2БС10 и 33 нагнетательных скважин по пласту 2БС11.

Результаты исследования нагнетательных скважин приведены в таблице 3.4.

Как видно из таблицы, по пласту 2БС10 толща охвачена заводнением на 32% от всего числа пропластков, а по пласту 2БС11 этот показатель составляет 36.8%.

Таблица 3.4 Результаты исследования нагнетательных скважин

Количество скважин Число перф.интерв. Работающие пропластки, % Не охвачено заводнением, %
верх середина низ
Пласт 2БС10
23 25 36 12 20 32
Пласт 2БС11
33 33 23,7 10,5 20 36,8

Также на Южно-Ягунском месторождении проводятся геофизические исследования. За 2001 год было проведено 366 исследований в 306 скважинах, что составляет 29% действующего фонда. В 321 скважине проведено 276 исследований с целью определения герметичности колонны.

Проводятся гамма - каротаж (ГК),основной замер 100 метров на подъеме с захватом вышележащего водоносного пласта, контрольный замер 50 м в интервале перфорации и в местах искажения ГК проявлением радиоактивных аномалий. Высокочувствительная термометрия (ВЧТ)- в остановленной на 6-8 часов скважине. Выполняются основной и контрольный замеры. При необходимости остановка скважины контролируется глубинным манометром по восстановлению забойного давления. Влагометрия (ВГД) в остановленной скважине - производится запись ВНР, если пласт работает через застойную воду ( на поверхности - нефть, в интервале пласта - вода).

Технология исследования скважин с закачкой меченого вещества.

Решаются задачи выделения интервалов обводнения, отдающих (поглощающих) пластов, определения профиля отдачи ( поглощения ), остаточной нефтенасыщенности, установления негерметичности цементного колодца и возможных заколонных перетоков, получения опорной информации для оценки степени выработки запасов на месторождениях, вступивших во вторую и третью стадии разработки.

Технология включает закачку в прискваженную часть пласта вещества с аномальными нейтроннопоглащающими свойствами и проведение фоновых и повторных измерений методом импульсного нейтронного каротажа (ИНК , чувствительным к содержанию таких веществ в околоскважинном пространстве. Основным интерпретационным параметром ИНК является декремент затухания плотности тепловых нейтронов Л, в качестве дополнительных параметров может быть использовано время жизни тепловых нейтронов Т, скорость счета во временных окнах на задержках после импульса нейтронов.

В качестве меченного вещества используют хлористый натрий, хлористый кальций, хлористый калий, соляную кислоту. Соляная кислота хорошо пропитывает низкопроницаемые глинистые породы, насыщенные нефтью и обеспечивает большой охват вытеснением неоднородных по проницаемости коллекторов по сравнению с водными растворами. Ее целесообразно использовать для решения качественных задач контроля за разработкой. Этот вид исследования только недавно начал внедряться на Южно - Ягунском месторождении. В 2001 году исследовались 5 скважин.

Скажины 1396/126, 2923/118, 772/44 были исследованы методом шумометрии. Объем исследований РГТ за 2001 год составил 103 скважины.

Объем исследований высокочувствительным термометром в добывающих скважинах составил 306 скважин, по определению притока исследовались 200 скважин, по отбивке забоя 59 скважин, по проверке на герметичность 47 скважин.

На Южно - Ягунском месторождении планируется использование всевозможных методов увеличения нефтеотдачи пластов и вовлечение в разработку слабодренируемых запасов, в том числе 8 ГРП, 80 системных технологий, 102 ОПЗ, 19 переходов. Необходимо более широко внедрять циклическую закачку в комплексе с системными технологиями и одновременно проводить селективную изоляцию на добывающих скважинах.

Контроль за объемами закачки воды осуществляется с помощью счетчиков СВУ. 85% замеров телемеханизированы, остальные замеряются в ручном режиме. Все действующие скважины оборудованы замерными устройствами. Контроль ведется по кустовым насосным скважинам, по направлениям и по скважинам.

На нагнетательных скважинах за прошедший год проведено 28 капитальных ремонтов и 136 текущих. С целью увеличения приемистости нагнетательных скважин проведено 21 кислотных обработок.

В таблице 3.5. приведены обемы промысловых геофизических и гидродинамических исследований, выполненных на Южно-Ягунском месторождении в 2001 году

Таблица 3.5 ПГИ и ПГД за 2001 год на Южно-Ягунском месторождении.

п/п

Вид исследований Количества
скважин Замеров
1 Определение профиля притока, источника обводн. и тех. сост. добывающих скважин 59 63
2 Определение профиля приемистости, тех. состояния нагнетательных скважин 208 211
3 Исследования гироскопичес. инклинометром 121 121
4 Определение Рпл. 177 419
5 Определение Нст. 753 2525
6 Определение Ндин. 1082 8121
7 Исследование методом КВУ 230 266
8 Исследование методом ПД 92 180
9 Замер дебита добывающих скважин 920 58717
10 Отбор устьевых проб на водосодержание 920 37350
11 Замер приемистости нагнетательных скважин 160 7370

Геолого–технические мероприятия (ГТМ)

На месторождении планомерно внедряются различные методы повышения нефтеотдачи и интенсификации добычи нефти.

В 2001 году на Южно-Ягунском месторождении проведено 239 ГТМ с суммарным приростом дебитов добывающих скважин 1995т/сут. За счет этих мероприятий за год добыто 309,193 т.т. нефти.

Их перечень приведен в таблице 3.6.

Таблица 3.6 ГТМ за 2001 год.

п/п

Вид мероприятий

Кол-во скв-н Добыча нефти, т.т. Средний при-рост дебита на 1скв-ну,т/сут
1 Ввод новых скважин 4 10,47 14,4
2 Ввод из бездействия 35 72,38 11,7
3 Ввод из консервации, пьезометра 42 21,48 2,6
4 Перевод на мех.добычу 3 6,02 12,7
5 Оптимизация режимов работы скважин 120 100,21 5,0
6 Ремонтно-изоляционные работы 18 15,4 8,2
7 Интенсификация притоков (ОПЗ) 53 65,01 10,1
8 Возврат с других горизонтов 9 10,5 7,1
ИТОГО 293 309,19 6,8

Как видно из таблицы 3.6. наиболее эффективны (по приросту дебита скважин) такие ГТМ, как перевод скважин на мех. добычу, ввод новых скважин, ввод скважин из бездействия.

В течение года выполнено 132 капитальных ремонтов добывающих скважин силами подрядных организаций: УПНП и КРС, «Когалымнефтепрогресс», Woodbine. При среднегодовой успешности ремонтов 80,0%, по всем отремонтированным скважинам добыто 284,5т.т нефти, из них 183,86т.т.-дополнительная добыча. На нагнетательных скважинах проведено 23 капитальных и 42 текущих ремонтов. Введено под нагнетание 15 скважин.

Эффективность методов увеличения нефтеотдачи (МУН) пластов приведена в следующей таблице 3.7.


Таблица 3.7 Эффективность МУН применяемых в месторождений

п/п

Метод, технология Количество, скв./обр.

Доп.добыча

нефти, т.т.

1

2

3

Химические МУН

ОПЗ добывающих скважин

Гидродинамические МУН

Физические МУН

87/95

49/50

84

12

258,2

66,65

106,04

48,14

За текущий год по НГДУ «Когалымнефть» за счет применения физико-химических методов увеличения нефтеотдачи пластов (ГРП, СПС, ВДС, ЭСС, КМЭ и их композиций) дополнительно добыто 306,344т.т. нефти, за счет форсированного отбора и циклической закачки (ГМУН) – 106,04 т.т.


4 ТЕХНИЧЕСКАЯ ЧАСТЬ

4.1 Требования к конструкции скважин, технологиям и производству буровых работ

Важнейшим этапом проектирования, обуславливающим качество строительства скважин, а также дальнейшую эффективную и длительную эксплуатацию является выбор рациональной конструкции скважины.

Конструкция должна быть экономичной и обеспечивать: эксплуатационную надежность скважины как технического сооружения, проектный уровень ее эксплуатации, оптимальный режим проводки ствола скважины на уровне современной техники и технологии, предупреждение осложнений и аварий, а также охрану недр в процессе бурения и в период эксплуатации, качественное разобщение продуктивных и проницаемых горизонтов.

В соответствии с этим, а также с учетом конкретных геолого-физических характеристик залегаемых пород и условий вскрытия продуктивных пластов для Южно-Ягунского месторождения рекомендуются следующие варианты конструкций, скважин в зависимости от применяемой технологии.

При вскрытии продуктивных пластов БС11-1, ЮС1 и ЮС2 рекомендуется следующая конструкция скважин:

- направление диаметром 425 мм спускается на глубину 30-50 м, трубы отечественного производства с резьбой типа ОТТМ. Цементируется раствором нормальной плотности до устья;

- кондуктор диаметром 324 мм в добывающих скважинах – на глубину 400-450 м, а в нагнетательных, как минимум, на 20 м ниже подошвы люлинворской свиты. Трубы отечественного производства с резьбой типа ОТТМ. Цементируется раствором нормальной плотности до устья;

- при установке в верхней части кондуктора спец. приспособлений для удержания цементного раствора в кольцевом пространстве (при опускании его уровня в процессе ОЗЦ) возможен вариант бурения без спуска направления. Однако, необходимо иметь ввиду, что подъем цементного раствора до устья за кондуктором во всех скважинах не гарантируется. Тем самым не всегда обеспечивается изоляция верхних водоносных горизонтов и, как следствие, не исключает их загрязнение.

Предпочтительнее спуск и цементирование направления. В нижней части кондуктор центрируется с целью предотвращения возможных осложнений в процессе дальнейшего углубления скважины.

Эксплуатационная колонна диаметром 146 мм спускается на проектную глубину – на 50 м ниже подошвы эксплуатационного объекта.

В интервале продуктивных отложений, а также башмака кондуктора колонна центрируется.

При толщине перемычки, разделяющей продуктивный и ближайший водоносный горизонты, до 8 м в добывающих и до 12 м в нагнетательных скважинах колонна оборудуется пакером, устанавливаемым в этой перемычке.

Высота подъема тампонажного раствора за эксплуатационной колонной в добывающих скважинах устанавливается на 100 м выше башмака кондуктора, в нагнетательных – до устья. В реальных условиях, учитывая снижение уровня в процессе ОЗЦ, тампонажный раствор должен быть поднят, как минимум, в добывающих скважинах – в башмак кондуктора, в нагнетательных – должна быть перекрыта люлинворская свита.

За колонной в интервале от башмака до уровня на 150 м выше продуктивного пласта размещается седиментационно устойчивый цементный раствор нормальной плотности, выше-облегченный глиноцементный.

В случае, если закачивание воды в нагнетательные скважины будет осуществляться через НКТ, оборудованные пакером, при надлежащем контроле за режимом работы скважины, необходимо поднять тампонажный раствор во всех категориях скважин до уровня на 100 м выше башмака кондуктора.

Для скважин Южно-Ягунского месторождения с целью недопущения гидроразрыва пластов и уменьшения поглощения цементных растворов эксплуатационными объектами рекомендуется цементирование в две ступени.

Разрыв времени между окончанием цементирования нижней ступени и началом цементирования верхней должен быть не менее удвоенного времени начала схватывания тампонажного раствора в условиях температуры и давления нижней ступени цементируемого интервала. Во время ОЗЦ нижней ступени необходимо периодически восстанавливать циркуляцию через отверстия муфты для ступенчатого цементирования.

Следует иметь ввиду, что существующая технология крепления обеспечивает надежность разобщения пластов продуктивной части разреза при среднестатистической величине депрессии 1Мпа на 1м интервала разделяющей непроницаемой перемычки. В реальных условиях непроницаемый раздел может быть незначительным, либо вообще отсутствовать. В этих случаях возникновение заколонных перетоков или подтягивание подошвенной воды неизбежно и определяется только фактором времени.

Для обеспечения качественного крепления ствола скважины и надежного разобщения проницаемых горизонтов должны применяться специальные технические средства на обсадные колонны (скребки, турбулизаторы, центраторы).

Основной функцией тампонажных растворов является изоляция с их помощью флюидосодержащих пластов друг от друга и от земной поверхности. В проекте строительства скважин должны быть предусмотрены следующие технико – технологические решения, обеспечивающие природоохранные функции цементных растворов и ограничивающие их отрицательные воздействия на окружающую среду:

- интервалы подъема цементных растворов за обсадными колоннами выбираются в соответствии с требованиями технологических регламентов на крепление скважин и геологической характеристикой разреза данного месторождения; применение токсичных материалов в процессе цементирования является недоступным.

- для улучшения сцепления цементного камня со стенками обсадных труб и стенками скважины предусмотрена предварительная прокачка нетоксичной буферной жидкости, разрушающей глинистую корку.

Контроль качества цементирования осуществляется геофизическими методами и опрессовкой колонн согласно «Инструкции по испытанию скважин на герметичность». Устье скважины оборудуется в соответствии с действующими нормативными документами противовыбросовым оборудованием.

Основные требования к организации и производству буровых работ на Южно-Ягунском месторождении – это безаварийная проводка ствола скважины, снижение себестоимости метра проходки и минимально возможное техногенное воздействие на окружающую природную среду, недра и подземные воды при обеспечении запланированных объемов бурения.

Правила выполнения этих требований должны соблюдаться в процессе разработки проектной документации и на всех этапах строительства скважин, включая проведение подготовительных вышкомонтажных работ, бурение, освоение, а также ликвидацию и консервацию скважин. При этом предусматривается постоянный контроль за состоянием окружающей среды.

4.1 Подземное и устьевое оборудование способах добычи

Южно-Ягунское месторождение находится на стадии, когда основной фонд скважин разбурен, накоплен опыт эксплуатации скважин при высоком уровне их использования. Базовым способом эксплуатации скважин являются УЭЦН и УШГН (механизированный фонд добывающих скважин составляет 96,8 %) и лишь небольшая часть эксплуатируется фонтанным способом.

4.2.1 Фонтанная эксплуатация скважин

Фонтанным способом эксплуатации скважин называется способ, при котором подъем жидкости (нефти) на поверхность происходит только за счет пластовой энергии.

Условия фонтанирования скважин завися от энергии газожидкостной смеси, расходуемой на подъем 1т жидкости; изменения давления от забойного до давления на устье; средней скорости движения смеси, зависящей от диаметра НКТ, и содержания воды в добываемой жидкости. В целях наиболее полного использования энергии, заключенной в том или ином пласте, отбор жидкости из скважин из скважин ограничивается.

Оборудование скважин состоит из наземного и подземного. К наземному относятся: фонтанная арматура, манифольд, лубрикатор, выкидная линия для подключения скважины к системе промыслового сбора и транспорта нефти и газа. К подземному относятся: насосно – компрессорные трубы, пакеры, клапаны – отсекатели, циркуляционные клапаны, конические глухие подвески, башмачные клапаны.

Подземное оборудование предназначается для:

- предотвращения открытого фонтанирования скважин при разрушении или повреждении устьевого оборудования, нарушения герметичности эксплуатационной колонны и некачественном цементировании межтрубного пространства;

- обеспечения одновременно раздельной эксплуатации двух и более продуктивных пластов; разобщения вскрытого продуктивного горизонта от выше- и нижележащих пластов; разобщения лифтовой колонны от затрубного пространства;

- обеспечения разнообразных промысловых технологических операций, связанных с эксплуатацией или ремонтом скважин.

В процессе эксплуатации скважины газожидкостная смесь из подъемных трубпроходит через центральную стволовую задвижку и направляется в один из выкидов, другой выкид закрыт.

Фонтанные арматуры различаются по конструктивному исполнению и прочностным показателям: рабочему давлению, размерам проходного сечения ствола, конструкции фонтанной елки и числу спускаемых в скважину рядов труб, виду запорных устройств. Изготовляют эту арматуру тройникового и крестового типов с условным проходом по стволу от 50 до 100 мм (рис.4.2.). Рассчитана она на давление 14, 21, 25 и 70 МПа.

Для контроля за процессом эксплуатации скважины установлены два манометра с трехходовыми кранами: один – на отводе крестовика трубной головки для замера давления в межтрубном пространстве скважины, другой – в верхней части арматуры для замера давления на устье скважины.

В процессе эксплуатации фонтанных скважин периодически возникает необходимость проводить исследования продуктивных пластов для определения пластовых давлений, температур и других характеристик пласта скважинными манометрами, термометрами и другими приборами. Приборы спускают через специальное герметизирующее устройство – лубрикатор, устанавливаемый на буферной задвижке фонтанной арматуры. После опрессовывания лубрикатора при помощи лебедки, смонтированной на специальной машине, спускают скважинный прибор. Для наиболее экономичного расходования пластовой энергии и, следовательно, длительного фонтанирования скважины дебит ее регулируется созданием противодавления на устье при помощи штуцеров, которые монтируются на выкидных линиях, после боковой задвижки, между фланцевыми соединениями.

Преимуществом фронтального метода является простота скважинного оборудования и отсутствие подвода электроэнергии извне.

4.2.1 Эксплуатация скважин штанговыми глубинными насосными установками

УШГН состоит из наземного и подземного оборудования.

В наземное входит станок-качалка, состоящий из электродвигателя, редуктора, кривошипа, шатуна, балансира, подвески устьевого штока, устьевого штока, устьевого сальника с устьевой обвязкой.

Подземное оборудование включает: на колонне насосно-компрессорных труб (НКТ) спускается в скважину глубинный насос с фильтром. Насос оснащен всасывающим клапаном. Внутрь НКТ на колонне штанг спускают плунжер насоса с одним или двумя нагнетательными клапанами. Кроме того, подземное оборудование может включать различные защитные устройства( газовые и песочные якори, хвостовики), присоединенные к патрубку ШСН и улучшающие его работу в осложненных условиях (песок, газ).

Наземное оборудование:

Станок-качалка - это механизм, предназначенный для преобразования врщательного движения вала электродвигателя установки в возвратно- поступательное движение головки балансира.

Станок-качалка сообщает штангам возвратно-поступательное движение близкое к синусоидальному. СК имеет гибкую канатную подвеску для соединения с верхним концом полированного штока и откидную или поворотную головку балансира для безпрепятственного подхода спуско-подъемных механизмов при подземном ремонте скважины.

Основные узлы станка-качалки: пирамида, редуктор, электродвигатель - крепятся к единой раме, которая закрепляется на бетонном фундаменте. Кроме того, все СК снабжены тормозным устройством, необходимым для удержания балансира и кривошипов в любом заданном положении. Точка соединения шатуна с кривошипом может менять свое расстояние относительно центра вращения перестановкой пальца кривошипа в то или иное отверстие, которых для этого предусмотренно несколько. Этим достигается ступенчатое изменение амплитуды качаний балансира, т.е.длины хода штанг.

Поскольку редуктор имеет постоянное передаточное число,то изменение частоты качаний достигается только изменением передаточного числа клиноременной трансмиссии и сменой шкива на валу электродвигателяна больший или меньший диаметр.

Станки-качалки выполняются вдвух исполнениях: СК и СКД по ОСТ 26-08-87 шести типоразмеров.

Приделы изменения основных параметров следующие: грузоподъемность от 10 до 200 кН (1...20 тс), длина хода балансира от 0,3 до м, чило качаний в минуту 4,7........15,5, потребляемая мощность 1,7...55 кВт масса 10...320 кН (1...32 тс). Оборудование устья скважины

Это оборудование предназначено для герметизации устья и регулирования отбора нефти в период фонтанирования при эксплуатации штанговыми скважинными насосами, а также для проведения технологических операций, ремонтных и исследовательских работ в скважинах, расположенных в умеренном и холодном макроклиматических районах.

В связи с широким распространением однотрубной системы сбора продукции скважин при централизованных установках по сепарации газа и замеру дебитов сильно возросли давления на выкидах насосных установок. В некоторых случаях возникает необходимость иметь на устье скважин (удаленные скважины, высокие вязкости) давления, доходящие до 4 МПа. Это усложняет конструкцию устьевого оборудования и повышает к нему технические требования.

Канатная подвеска

Сальниковый шток присоединяется к головке балансира с помощью канатной подвески. Конструкция канатной подвески допускает установку динамографа для снятия динамограммы (зависимость силы, действующей в точке подвеса, от хода штока).

Кроме того, с помощью канатной подвески регулируется посадка плунжера в цилиндр насоса для предупреждения ударов плунжера о всасывающий клапан или выхода плунжера из цилиндра.

Штоки сальниковые устьевые ШСУ

Предназначены для соединения колонны насосных штанг с канатной подвеской станка-качалки. Применяются в умеренном и холодном макро климатическом районах. Их изготавливают из круглой холоднотянутой калиброванной качественной углеродистой стали марки 40.

Подземное оборудование:

Скважинные штанговые насосы

Скважинные штанговые насосы предназначены для откачивания их нефтяных скважин жидкости обводненностью до 99%, температурой более 130 С, содержанием сероводорода не более 50 г/л,минерализацией воды не более 10 г/л.

Скважинные насосы представляют собой вертикальную конструкцию одинарного действия с неподвижным цилиндром, подвижным металлическим плунжером и шариковыми клапанами. Спускаются в скважину на колонне насосно-компрессорных труб и насосных штанг.

Насосы разделяются на невставные (трубные) и вставные. Основные особенности их состоят в следующем.

Невставные насосы

Цилиндр спускается в скважину на насосно-компрессорных трубах без плунжера. Плунжер спускается отдельно на насосных штангах. Плунжер вводится в цилиндр вместе с подвешенным к плунжеру всасывающим клапаном. Чтобы плунжер довести до цилиндра насоса без повреждений через трубы, последние должны иметь внутренний диаметр больше наружнего диаметра плунжера (примерно на 6 мм).Для извлечения невставного насоса в случае замены или ремонта необходимо сначало извлеч штанги с висящим на их конце плунжером, а затем насосные трубы с висящим на их конце цилиндром насоса.

Вставные насосыЦилиндр в сборе с плунжером и клапанами спускается на штангах. В этом случае на конце насосных труб заранее устанавливается специальное посадочное устройство - замковая опора, на которой происходит посадка и уплотнение насоса. Для извлечения вставного насоса в случае ремонта достаточно извлеч только штанги, вместе с которыми извлекается весь насос.

Поскольку при вставном насосе через трубы данного диаметра пропускается не только плунжер, но и цилиндр вместе с кожухом, то диаметр плунжера вставного насоса должен быть намного меньше диаметра трубного. Поэтому подача вставного насоса при трубах данного диаметра всегда меньше подачи невставного.

Штанги насосные

Эти штанги служат соединительным звеном между наземным индивидуальным приводом станка-качалки и скважинным насосом. Предназначены для передачи возвратно поступательного движения плунжера насоса. Штанга представляет собой стальной стержень круглого сечения диаметром 12...28 мм и длиной 1000...8000 мм с высаженными резьбовыми концами. Резьба штанги метрическая специальная.

Штанги в основном изготавливают из лигированных сталей и выпускают длиной 8000 мм и укороченные 1000, 1200, 1500, 2000 и 3000 мм как для нормальных, так и для коррозионных условий эксплуатации. Укороченные штанги применяются при регулировании длины колонны штанг с целью нормальной посадки плунжера штангового насоса. Они изготавливаются из стали той же марки и подвергаются такой же термообработке, что и штанги нормальной длины.

Насосно-компрессорные трубы (НКТ)

Насосно-компрессорные трубы бывают с гладкими и высаженными (равнопрчными) концами. Трубы с гладкими концами имеют равный диаметр по длине и поэтому в мемтах нарезки под муфтовые соединения несколко ослаблены. Трубы с высаженными наружу концами имеют утолщенные концы вместах нарезки под муфтовые соединения и поэтому повышенную прочность нарезной части трубы.

По длине НКТ разделяются на три группы: I - от 5,5 до 8 м; II - от 8 до 8,5 м; III - от 8,5 до 10 м.

Трубы изготавливаются из сталей пяти групп рочности: Д, К, Е, Л, М. Гладкие трубы и муфты к ним групп прочности К, Е, Л, М, а также все трубы с высаженными концами подвергаются термообработке.

Условный диаметр трубы с точностью до нескольких десятых долей миллиметра совпадает с наружним диаметром тела трубы.

НКТ в скважинах, особенно при ШСНУ, несут большую нагрузку. Кроме растяжения от действия собственного веса они подвержены нагрузке от веса столба жидкости, заполняющей НКТ, и иногда от веса колонны штанг при их обрыве в верхней части или при посадке плунжера на шток всасывающего клапана. В искривленных скважинах они подвергаются трению штанговыми муфтами.

Правильное сопряжение резьбовых соединений НКТ достигается при приложении крутящего момента определенной величины. Поэтому важно использовать автоматы для свинчивания и развинчивания НКТ со специальным фрикционным регулятором момента. Недопустим спуск НКТ без смазки резьбовых соединений, а также их транспортировка без предохранительных колец и деревянных заглушек.

Для уменьшения собственного веса труб при необходимости их спуска на большую глубину применяют ступенчатую колонну НКТ с большим диаметром вверху и малым внизу.

4.2.3 Общие сведения об эксплуатации скважин УЭЦН

Установки УЭЦН предназначены для откачки пластовой жидкости из нефтяных скважин. Установка состоит из погружного насосного агрегата и кабельной линии, спускаемых в скважину на насосно-компрессорных трубах, и наземного электрооборудования (трансформаторной подстанции).

Погружной насосный агрегат включает в себя двигатель (электродвигатель с гидрозащитой) и насос, над которым устанавливают обратный и сливной клапаны.

Кабельная линия для подвода напряжения к двигателю состоит из основного питающего кабеля и плоского удлинителя с муфтой. Кабель прикреплен к гидрозащите, насосу и насосно-компрессорным трубам металлическими поясами.

Оборудование устья скважины обеспечивает подвеску колонны насосно-компрессорных труб с насосным агрегатом и кабелем на фланце обсадной колонны, герметизацию затрубного пространства, отвод пластовой жидкости в трубопровод и газа из затрубного пространства.

Трансформаторная подстанция (трансформатор и комплектное устройство) преобразует напряжение промысловой сети до оптимальной величины на зажимах электродвигателя с учетом потерь напряжения в кабеле и обеспечивает управление работой насосного агрегата установки и ее защиту при аномальных режимах.

Вместо комплектных устройств и трансформаторов можно применять комплектные трансформаторные подстанции типа КТППН-82 мощностью 100 и 250 кВА на напряжение 6 или 10 кВ для питания насосов, работающих в одиночных скважинах, и типа КТППНКС для питания четырех одновременно работающих скважинных насосов на кусте из четырех скважин.

В зависимости от максимального поперечного габарита погружного агрегата установки разделяют на три условные группы — 5, 5А и 6:установки группы 5 поперечным габаритом 112 мм применяют в скважинах с колонной обсадных труб внутренним диаметром не менее 121,7 мм;

Кабель в сборе имеет унифицированную муфту кабельного ввода К38 (К46) круглого типа. В металлическом корпусе муфты герметично заделаны изолированные жилы плоского кабеля с помощью резинового уплотнителя.

К токопроводящим жилам прикреплены штепсельные наконечники.

Модули насосные — газосепараторы (МНГ) предназначены для уменьшения объемного содержания свободного газа на всасывании насоса.

Газосепараторы соответствуют группе изделий II, виду 1 (восстанавливаемые) по РД 50-650—87, климатическое исполнение — В, категория размещения — 5 по ГОСТ 15150—69. Могут быть поставлены в двух исполнениях: газосепараторы 1МНГ5, МНГ5А и 1МНГ6 обычного исполнения; газосепараторы 1МНГК5 и МНГК5А повышенной коррозионной стойкости.

Устанавливают между входным модулем и модулем-секцией.

Газожидкостная смесь через сетку и отверстия входного модуля поступает в полость шнека и рабочих органов. Под напором газожидкостная смесьпоступает во вращающуюся камеру сепаратора, снабженную радиальными ребрами, где под действием центробежных сил газ отделяется от жидкости. Далее жидкость с периферии камеры сепаратора поступает по пазам переводника на всасывание насоса, а газ через наклонные отверстия отводится в затрубное пространство.

Трансформаторы обеспечивают питание погружных двигателей от сети переменного тока частотой 50 Гц, напряжением до 6000 В, работают на открытом воздухе в районах с умеренным и холодным климатом.

Трансформатор ТМПН состоит из магнитопровода стержневого типа, обмоток высокого и низкого напряжения, бака, заполняемого трансформаторным маслом, крышки с вводами и приводами переключателей, расширителя с маслоуказателями и воздухоосушителем и переключателем ответвлений обмоток высокого напряжения. Для герметизации разъемных частей трансформатора применяют уплотнения из маслостойкой резины.

Комплектные устройства обеспечивают включение и выключение погружных двигателей, дистанционное управление с диспетчерского пункта и программное управление, работу в ручном и автоматическом режимах, отключение при перегрузке и отклонении напряжения питающей сети выше 10% или ниже 15% от номинального, контроль тока и напряжения, а также наружную световую сигнализацию об аварийном отключении.

Комплектное устройство ШГС5805-49АЗУ1 размещено в металлическом шкафу двустороннего обслуживания.

Комплектное устройство КУПНА 83-29А2У1 состоит из высоковольтного шкафа управления двустороннего обслуживания с передними дверьми и задним заграждением и низковольтного ящика управления. В шкафу установлены трансформаторы тока и напряжения, разъединитель, высоковольтный контактор, выключатели предохранители, разрядники. Ящик содержит блок управления, электроизмерительные приборы, реле, сигнальную аппаратуру, переключатели и пусковые кнопки.

Рисунок 4.1 Установка погружного центробежного насоса:

1 — двигатель; 2 — модульный насос; 3 — кабельная линия:

4 — обратный и спускной клапаны; 5 — крепежный пояс;

6 — трансформаторная подстанция

Погружной электродвигатель.

Погружной электродвигатель (ПЭД) является приводом электроцентробежного насоса (рисунок 4.2). Применяется асинхронный электродвигатель с короткозамкнутым ротором. В соответствии со спецификой эксплуатации ПЭД выполнен цилиндрическим и сильно развит в длину.

Отечественная промышленность освоила выпуск более 12 типов ПЭД мощностью от 10 до 125. кВт. Выпускаются ПЭД с диаметрами корпуса 103 мм для обсадной колонны 121,7; 117 мм для 130 мм, 123 мм для 143,3 мм, 138 мм для 148,3 мм.

Основными узлами ПЭД являются: статор, ротор, опорная пята, вал. Назначение статора и ротора и принцип их работы аналогичны электродвигателю обычной конструкции.

Специфичным является положение ПЭД в скважине вертикальное, следовательно, ротор ПЭД.нужно удержать и зафиксировать в этом положении.

Для этой цели служит опорная пята и подшипники скольжения, расположенные на валу и фиксируемые в статоре ПЭД. Вал имеет сквозное отверстие, через которое циркулирует масло, принудительно перекачиваемое турбинкой. Масло смазывает подшипники и охлаждает ПЭД.

Напряжение на обмотку статора подается через специальный герметичный токоподвод, своеобразный штепсельный разъем.

Погружной двигатель имеет следующую маркировку: ПЭДС90-1) 7В5.

Это означает: П — погружной, Э - электрический, Д — двигатель, С — секционный, 90 — мощность в кВт, 117 — диаметр корпуса в мм, В — климатическое исполнение, 5 — диаметр обсадной колонны.

Система гидрозащиты.

Под гидрозащитой понимают комплекс устройств, предназначенных противодействовать проникновению пластовой жидкости в полость двигателя и компенсировать температурное расширение масла в ПЭД.

Промышленность выпускает гидрозащиту, состоящую из двух узлов — компенсатора (монтируется ниже ПЭД) и протектора (монтируется между ЭЦН и ПЭД) — типа «Г».

Компенсатор служит для 'передачи давления окружающей среды маслу в ПЭД и компенсации расхода масла. Представляет собой эластичный резиновый мешок, сообщающийся с ПЭД.

Протектор выполняет функцию защитной камеры ( узлы торцового уплотнения), разгрузочной камеры (узел гидропяты) и резервуара с маслом.

Подача напряжения к погружному электродвигателю осуществляется по бронированному трехжильному кабелю круглого или прямоугольного сечения.

Погружные насосы являются многоступенчатыми центробежными насосами. Каждая ступень состоит из вращающего рабочего колеса и неподвижного диффузора. Обьем выдаваемой жидкости определяется типом ступени. Из-за ограниченного диаметра обсадной трубы скважины напор, создаваемый отдельной ступенью относительно мал, поэтому определенное число ступеней собирается вместе, чтобы отвечать требованиям каждого отдельного применения. Суммарный напор насоса и потребляемая мощность определяется числом ступеней. Насосы производят в широком диапозоне производительностей и практически для всех условий, встречающихся в скважинах. Корпус, основание и выпускная головка изготавливаются из углеродистой стали. Рабочие колеса и диффузоры отлиты из чугуна с высоким содержанием никеля с целью повышения антиабразивных и антикоррозийных свойств. Вал делается из высокопрочной антикоррозионной нержавеющей стали. Общая длина односекционного насоса ограничена, чтобы обеспечить должную сборку и транспортировку. Однако, несколько секций насоса можно соединить последовательно, чтобы создать необходимый напор. Максимальный размер (число ступений) насоса определяется на основании следующих ограничений: мощность насоса, ограниченная прочностью вала; номинальное давление корпуса насоса; нагрузочная способность упорного подшипника.

Наземное оборудование скважины, эксплуатируемой УЭЦН, составляет устьевая арматура, станция управления работой скважинной установки и трансформатор напряжения. Станция управления обеспечивает запуск и управление работой электродвигателя, трансформатор повышает напряжение, получаемое от промысловой электрической сети до величины, на которую рассчитан погружной двигатель.

4.2.4 Технические характеристики насосов

Количество и длина секций в насосе подбирается в зависимости от необходимой производительности и напора, но не более напора указанного в таблице 4.1.


Таблица 4.1 Технические характеристики насосов

Насос

Подача в

раб.

зоне,

м3/сут.

Напор

макс,

м

Макс.

потр.

мощн,

кВт

КПД

%

Напор,

м

Количество

ступеней, шт.

Потребляемая

мощность, кВт

Масса, кг

С-3 С-4 С-5 С-3 С-4 С-5 С-3 С-4 С-5 С-3 С-4 С-5
ЭЦНА5-18 12-30 2000 16,2 26 510 680 870 123 167 211 4,06 5,54 6,93 104 135 166
ЭЦНА5-30 20-40 2000 20,0 35 460 600 790 123 167 211 4,55 6,06 7,77 104 135 166
ЭЦНА5-60 35-80 2000 31,7 44 500 675 855 109 147 186 7,84 10,58 13,39 107 137 178
ЭЦНА5-80 60-115 2000 36,2 51,5 505 695 870 110 149 189 8,91 12,07 15,31 100 138 166
ЭЦНА5-125 105-165 2000 48,7 58,5 420 550 720 94 127 160 10,2 13,8 17,44 112 147 180
ЭЦНА5-200 150-265 1400 65,8 50 275 375 470 74 101 127 12,8 17,41 21,9 102 132 166
ЭЦНА5А-160 125-205 2000 61,9 61 495 670 845 91 123 155 15,23 20,62 26,19 131 170 208
ЭЦНА5А-250 195-340 1850 86,0 61,5 270 370 460 50 68 86 12,55 17,06 21,58 129 167 205
ЭЦНА5А-400 300-440 1300 101,2 59,5 190 260 320 47 64 80 15,0 20,5 25,58 127 164 202
ЭЦНА5А-500 430-570 1150 122,0 54,5 170 230 290 42 57 72 17,8 24,17 30,5 143 185 228
ЭЦНА6-800 550-925 1100 175,66 60 190 260 325 38 51 65 30,62 41,09 52,39 166 205 264
22..ЭЦНА5-60 35-80 1950 29,17 51 483 658 828 105 143 180 6,3 8,58 10,8 116 151 186

Примечание: По заказу потребителя насосы могут быть изготовлены с большим напором, чем указано в таблице 4.1.


4.2 Преимущество скважин оборудованных УЭЦН

При эксплуатации скважин штанговыми насосами появляются осложнения связанные с техническими возможностями штанговых насосов:

- необходимость надёжной механической связи привода с насосом в скважине;

- ограниченность количества возвратно-поступательных движении плунжера насоса;

- низкий КПД насоса из-за потерь механической энергии на деформирование деталей конструкции;

- ограниченность применения на искривлённых скважинах;

- ограниченность по подаче насоса;

Поэтому, при выборе способа эксплуатации скважины с дебитом по жидкости равным 60 м3 /сут., предпочтение было отдано бесштанговому способу эксплуатации, в частности с применением установки электроцентробежного насоса. Кроме того применение УЭЦН при дальнейших этапах разработки месторождения позволит применить форсированные методы отбора пластовой жидкости.

Эксплуатация скважин бесштанговыми насосами занимает на современном этапе развития отечественной нефтедобывающей промышленности особое место. Достаточно сказать, что из основных типов бесштанговых установок: установок погружных центробежных электронасосов (УПЦЭН), установок гидравлических поршневых насосов ГПН) и установок винтовых электронасосов (УВЭН) – на долю УПЦЭН ходится примерно половина всей добываемой в отрасли жидкости. Эксплуатация скважин бесштанговыми установками характеризуется некоторыми особенностями, связанными с принципом действия и конструкцией самих установок.

При подборе установки выбирают такие типоразмеры насоса, электродвигателя с гидрозащитой, кабеля, трансформатора, диаметра НКТ, а также глубину спуска насоса, сочетание которых обеспечивает освоение скважины и необходимую норму отбора ( номинальный дебит ) жидкости из нее в установившемся режиме работы системы скважина - установка при наименьших затратах.


5 СПЕЦИАЛЬНАЯ ЧАСТЬ

5.1 Характеристика фонда скважин, оборудованных УЭЦН

В настоящие время добыча нефти на Южно - Ягунском месторождении осуществляется механизированным способом.

На 01.01.2002 года эксплуатационный фонд ЦДНГ-1 Южно - Ягунского месторождения составил, 174 скважины. Из эксплуатационного фонда в действии находятся 151 скважина, в бездействии 23 скважины. Из всего эксплуатационного фонда скважины, оборудованные УЭЦН, составляют 137 скважин, а скважины, оборудованные ШГН, составляют 37 скважин.

В простаивающем фонде находятся 6 скважин, оборудованных УЭЦН, скважин оборудованных ШГН в простое нет. Отсюда следует, что на 01.01.2002 года количество скважин, дающих продукцию, составляет 126 скважин оборудованных УЭЦН и 19 скважин оборудованных ШГН. Количество скважин, относящиеся к системе поддержания пластового давления, составляет 56 скважин, из них в простое находится 2 скважины. Из всего фонда ликвидировано 12 скважин и 15 скважин относятся к пьезометрическим. Общий фонд скважин ЦДНГ-1 Южно - Ягунского месторождения составляет 334 скважины.

Средний дебит по скважинам, оборудованным УЭЦН, по жидкости составляет 83м3 /сут, по нефти 31,3 т/сут, а средний дебит по жидкости скважин, оборудованных ШГН, составляет 15м3 /сут, по нефти 1,9 т/сут.

На долю УЭЦН приходится 63% эксплуатационного фонда. Наибольшие количество установок приходится на ЭЦН-50, затем ЭЦН-80 и ЭЦН-40. На участке используются также импортные установки DN-280, DN-450, DN-610, DN-800. Фонд скважин оборудованных УЭЦН эксплуатируется со сравнительно высокими динамическими уровнями и требует значительной оптимизации. Наибольшею оптимизацию в целом на участке необходимо провести по фонду отечественных установок. Глубина подвески насосных установок составляет в среднем 1600-2100 метров.

В фонде скважин, оборудованных ШГН, на долю отечественных ШГН приходится 89% скважин, на долю импортных 10%. Хотя по ШГН динамические уровни в целом достаточно низкие, здесь имеется потенциал для их оптимизации. Используются как не вставные, так и вставные ШГН. Станки-качалки типа СКД и импортные Vulcan. Глубина подвески ШГН составляет 1100-1600 метров. Используются также хвостовики.

Применение УЭЦН позволяет вводить нефтяные скважины в эксплуатацию как непосредственно после бурения, так и при переводе с фонтанного способа добычи нефти на механизированный способ.

Применение УЭЦН позволяет эффективно разрабатывать месторождения, находящиеся на поздней стадии эксплуатации, когда форсированные режимы работы являются одним из решающих факторов, существенно влияющих на объемы добычи нефти.

Наличие штанговой колонны, сложная кинематика станка, необходимость использования тяжелого оборудования при эксплуатации высокодебитных скважин сужают область применения штанговых установок. На промыслах широко распространены установки с погружными центробежными электронасосами (УПЭЦН), позволяющие при большой подачи развивать высокий напор, достаточный для подъема нефти с больших глубин.

5.2 Анализ эффективности работы и причины отказов УЭЦН

По результатам работы фонда ЭЦН основными причинами снижения наработки на отказ в условиях Южно - Ягунского месторождения является:

1) старение оборудования скважин;

2) увеличение осложненного фонда скважин;

3) рост малодебитного фонда скважин.

Старение оборудования скважин, в первую очередь сказывается на герметичности НКТ. Из 29 ремонтов ЭЦН, не отработавших гарантийный срок, 3 отказа связано с не герметичностью НКТ. Не герметичности обычно выявляются на НКТ73В, и их характер – отверстия (трещины) по телу. Реальный единственный способ борьбы с этим является замена НКТ на новые.

При работе со скважинами, оборудованными ЭЦН, факторами, осложняющими их эксплуатацию в наших условиях, являются АСПО, механические примеси и солеотложения.

За год фонд ЭЦН, осложненных парафиноотложениями, составляет 74 скважины. Механизм борьбы с ними является механический способ, т.е. спуск механических скребков, но он не совершенен, так как возникают проблемы со скребками, особенно в зимний период (полеты и прихваты) и невозможно их спускать при низких температурах. Для предотвращения полетов скребков, начали внедрять противополетные муфты. В дальнейшем, по мере роста малодебитного фонда скважин проблема парафиноотложений будет усугубляться, и сегодня ясна необходимость отработки других способов по борьбе с данной проблемой.

При эксплуатации скважин на Южно- Ягунском месторождении становится вынос механических примесей. Они влияют в первую очередь на износ рабочих органов. По этой причине в ЦДНГ – 1 отказала одна установка и его наработка на отказ составила 266 суток. В большинстве случаев, это скважины, на которых недавно была проведена оптимизация работы скважины. На данный момент эта проблема решается путем перехода на износостойкое оборудование. Следующая по актуальности проблема при эксплуатации скважин становится солеотложение. Так в течение 2001 года по этой причине по ЦДНГ-1 отказало 2 установки со средней наработкой 174суток. Борются с этой проблемой путем обработок:

- обработка ПЗП;

- закачка ингибитора солеотложения в затрубное пространство рабочей скважины.

Проведем некоторый анализ за 2001 год и выведем основные причины отказов УЭЦН. За 2001 год по причинам отказа УЭЦН подняли 29 установок. Причины отказа были следующими: снижение изоляции, снижение подачи, нет подачи, и по причинам проведения геолого-технических мероприятий. На рисунке 5.1 показаны основные причины подъемов УЭЦН.

Рисунок 5.1 Основные причины подъемов УЭЦН.

Рассмотрим эти отказы более подробно, т.е. из-за чего они возникают.

Снижение изоляции может происходить по следующим причинам: порыв диафрагмы компенсатора, некачественный ремонт гидрозащиты, повреждения кабеля, полеты как по узлам УЭЦН, так и по узлам подвески. Эти причины выясняются непосредственно при смене насоса или при расследовании его, т.е. в процессе его разборки.

Снижение подачи возникает по следующим основным причинам: износ рабочих органов, слом вала, солеотложения, негерметичность НКТ.


5.3 Анализ ремонтов УЭЦН не отработавших гарантийный срок

По фонду УЭЦН было произведено 493 ремонтов в т.ч. 206,5 не отработавших гарантийный срок, или 41,89%.( 1998 год -142 ремонтов т.ч. не отработавших гарантийный срок 85 или 59,9%, 1999год - 148 ремонтов в т.ч. не отработавших гарантийный срок 62,5 или 42,2%, 2000 год- 94 ремонтов в т.ч. не отработавших гарантийный срок- 27 или 28,7%, 2001 год – 109 ремонтов в т.ч. не отработавших гарантийный срок – 32 или 29,4%).

На рисунке 5.2 приведены данные по ремонтам скважин и не отработавших гарантийный срок ремонтов по Южно-Ягунскому месторождению ЦДНГ-1.

Рисунок 5.2 Данные по ремонту скважин не отработавшие гарантийный срок

Из рисунка 5.2 видно, что количество скважин не отработавших гарантийный срок в период с 1998 по 2001 год значительно сократилось.

По причинам виновности ремонты по Южно-Ягунскому месторождению ЦДНГ-1 распределились следующим образом:


Таблица 5.1 Распределение ремонтов по вине предприятий

Структурное

подразделение

1998 1999 2000 2001
Всего % Всего % Всего % Всего %
УРС - 13,5 21,6 8 29,6 2,5 8,6
ЛЭС 26 30,6 15,5 24,8 4 14,8 6 20,6
КЦТБ 2 2,4 3 4,8 1 3,7 1 3,3
ЦДНГ 43 50,6 22 35,2 8 29,6 14,5 46,3
УПНПиКРС - 1,5 2,4 1 3,7 1 3,3
Не установлено 14 16,4 6 9,6 3 11,1 6 20
Эксперимент - 1 1,6 1 3,7 1 3,3
Всего: 85 100 62,5 100 27 100 32 100

Рисунок 5.3 Ремонты не отработавшие гарантийный срок по вине предприятия на Южно-Ягунском месторождении ЦДНГ-1

За рассматриваемый период по НГДУ «Когалымнефть» ЦДНГ-1 произошло уменьшение количества ремонтов не ОГС со 85 до 32.

Анализируя распределение ремонтов по виновности структурных подразделений можно отметить: